cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106491 Total number of bases and exponents in Quetian Superfactorization of n, including the unity-exponents at the tips of branches.

This page as a plain text file.
%I A106491 #30 Jul 09 2025 04:25:05
%S A106491 1,2,2,3,2,4,2,3,3,4,2,5,2,4,4,4,2,5,2,5,4,4,2,5,3,4,3,5,2,6,2,3,4,4,
%T A106491 4,6,2,4,4,5,2,6,2,5,5,4,2,6,3,5,4,5,2,5,4,5,4,4,2,7,2,4,5,5,4,6,2,5,
%U A106491 4,6,2,6,2,4,5,5,4,6,2,6,4,4,2,7,4,4,4,5,2,7,4,5,4,4,4,5,2,5,5,6,2,6
%N A106491 Total number of bases and exponents in Quetian Superfactorization of n, including the unity-exponents at the tips of branches.
%H A106491 Alois P. Heinz, <a href="/A106491/b106491.txt">Table of n, a(n) for n = 1..10000</a>
%H A106491 A. Karttunen, <a href="/A091247/a091247.scm.txt">Scheme-program for computing this sequence.</a>
%H A106491 <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>
%F A106491 From _Antti Karttunen_, Mar 23 2017: (Start)
%F A106491 a(1) = 1, and for n > 1, if A028234(n) = 1, a(n) = 1 + a(A067029(n)), otherwise a(n) = 1 + a(A067029(n)) + a(A028234(n)).
%F A106491 If n is a prime power p^k (a term of A000961), a(n) = 1 + a(k).
%F A106491 (End)
%F A106491 Other identities. For all n >= 1:
%F A106491 a(n) = A106490(n) + A064372(n).
%F A106491 a(n) = A106494(A106444(n)).
%e A106491 a(64) = 5, as 64 = 2^6 = 2^(2^1*3^1) and there are 5 nodes in that superfactorization. Similarly, for 360 = 2^(3^1) * 3^(2^1) * 5^1 we get a(360) = 8. See comments at A106490.
%p A106491 a:= proc(n) option remember; `if`(n=1, 1,
%p A106491       add(1+a(i[2]), i=ifactors(n)[2]))
%p A106491     end:
%p A106491 seq(a(n), n=1..100);  # _Alois P. Heinz_, Nov 07 2014
%t A106491 a[n_] := a[n] = If[n == 1, 1, Sum[1 + a[i[[2]]], {i, FactorInteger[n]}]]; Table[a[n], {n, 1, 100}] (* _Jean-François Alcover_, Nov 11 2015, after _Alois P. Heinz_ *)
%o A106491 (Scheme, with memoization-macro definec)
%o A106491 (definec (A106491 n) (cond ((= 1 n) n) ((= 1 (A028234 n)) (+ 1 (A106491 (A067029 n)))) (else (+ 1 (A106491 (A067029 n)) (A106491 (A028234 n)))))) ;; _Antti Karttunen_, Mar 23 2017
%o A106491 (PARI)
%o A106491 A067029(n) = if(n<2, 0, factor(n)[1,2]);
%o A106491 A028234(n) = my(f = factor(n)); if (#f~, f[1, 1] = 1); factorback(f); /* after _Michel Marcus_ */
%o A106491 a(n) = if(n<2, 1, if(A028234(n)==1, 1 + a(A067029(n)), 1 + a(A067029(n)) + a(A028234(n))));
%o A106491 for(n=1, 150, print1(a(n),", ")) \\ _Indranil Ghosh_, Mar 23 2017, after formula by _Antti Karttunen_
%Y A106491 Cf. A000961, A028234, A064372, A067029, A106444, A106490, A106492, A106494.
%K A106491 nonn
%O A106491 1,2
%A A106491 _Antti Karttunen_, May 09 2005 based on _Leroy Quet_'s message ('Super-Factoring' An Integer) posted to SeqFan-mailing list on Dec 06 2003