cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106497 Numbers whose square is the concatenation of two identical numbers, i.e., of the form NN.

This page as a plain text file.
%I A106497 #34 Feb 19 2024 14:48:00
%S A106497 36363636364,45454545455,54545454546,63636363637,72727272728,
%T A106497 81818181819,90909090910,428571428571428571429,571428571428571428572,
%U A106497 714285714285714285715,857142857142857142858
%N A106497 Numbers whose square is the concatenation of two identical numbers, i.e., of the form NN.
%C A106497 For the corresponding numbers N see A102567.
%C A106497 Numbers of the form j*(10^d + 1)/k where 10^d + 1 == 0 (mod k^2) and k/sqrt(10) < j < k. - _David W. Wilson_, Nov 09 2006
%D A106497 Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations, Experimental Math, 28 (2019), 428-439.
%D A106497 R. Ondrejka, Problem 1130: Biperiod Squares, Journal of Recreational Mathematics, Vol. 14:4 (1981-82), 299. Solution by F. H. Kierstead, Jr., JRM, Vol. 15:4 (1982-83), 311-312.
%H A106497 David W. Wilson, <a href="/A106497/b106497.txt">Table of n, a(n) for n = 1..1098</a>
%H A106497 Dr Barker, <a href="https://www.youtube.com/watch?v=c1peEN5Q-0c">Can Numbers Like These Be Square?</a>, YouTube video, 2023.
%H A106497 Andrew Bridy, Robert J. Lemke Oliver, Arlo Shallit, and Jeffrey Shallit, <a href="https://arxiv.org/abs/1707.03894">The Generalized Nagell-Ljunggren Problem: Powers with Repetitive Representations</a>, preprint arXiv:1707.03894 [math.NT], July 14 2017.
%e A106497 63636363637 is in the sequence because 63636363637^2 = 4049586776940495867769 is 40495867769 written twice.
%o A106497 (Python)
%o A106497 from itertools import count, islice
%o A106497 from sympy import sqrt_mod
%o A106497 def A106497_gen(): # generator of terms
%o A106497     for j in count(0):
%o A106497         b = 10**j
%o A106497         a = b*10+1
%o A106497         for k in sorted(sqrt_mod(0,a,all_roots=True)):
%o A106497             if a*b <= k**2 < a*(a-1):
%o A106497                 yield k
%o A106497 A106497_list = list(islice(A106497_gen(),10)) # _Chai Wah Wu_, Feb 19 2024
%Y A106497 Cf. A092118, A102567.
%K A106497 base,nonn
%O A106497 1,1
%A A106497 _Lekraj Beedassy_, May 04 2005
%E A106497 a(7) from _Klaus Brockhaus_, May 06 2005
%E A106497 More terms from _David W. Wilson_, Nov 05 2006
%E A106497 Reference and cross-references added by _William Rex Marshall_, Nov 12 2010