This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106509 #26 Jul 02 2021 16:51:12 %S A106509 1,0,1,-1,-1,1,1,0,-2,1,0,1,2,-3,1,-1,-1,-1,5,-4,1,1,0,0,-6,9,-5,1,0, %T A106509 1,0,6,-15,14,-6,1,-1,-1,1,-6,21,-29,20,-7,1,1,0,-2,7,-27,50,-49,27, %U A106509 -8,1,0,1,2,-9,34,-77,99,-76,35,-9,1,-1,-1,-1,11,-43,111,-176,175,-111,44,-10,1 %N A106509 Riordan array ((1+x)/(1+x+x^2), x/(1+x)), read by rows. %C A106509 Row sums are A106510. %C A106509 Diagonal sums are A106511. %C A106509 Inverse of A072405 (when this starts 1, 0, 1, ...). %H A106509 G. C. Greubel, <a href="/A106509/b106509.txt">Rows n = 0..50 of the triangle, flattened</a> %H A106509 Paul Barry, <a href="https://arxiv.org/abs/2104.01644">Centered polygon numbers, heptagons and nonagons, and the Robbins numbers</a>, arXiv:2104.01644 [math.CO], 2021. %F A106509 T(n, k) = Sum_{j=0..n-k} (-1)^j*binomial(2n-k-j, j). %F A106509 T(n,k) = T(n-1,k-1) - 2*T(n-1,k) + T(n-2,k-1) - 2*T(n-2,k) + T(n-3,k-1) - T(n-3,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = 0, T(2,1) = T(2,0) = -1, T(n,k) = 0 if k<0 or if k>n. - _Philippe Deléham_, Jan 12 2014 %F A106509 Sum_{k=0..n} T(n,k) = A106510(n). - _G. C. Greubel_, Apr 28 2021 %e A106509 Triangle begins: %e A106509 1; %e A106509 0, 1; %e A106509 -1, -1, 1; %e A106509 1, 0, -2, 1; %e A106509 0, 1, 2, -3, 1; %e A106509 -1, -1, -1, 5, -4, 1; %t A106509 (* The function RiordanArray is defined in A256893. *) %t A106509 RiordanArray[(1 + #)/(1 + # + #^2)&, #/(1 + #)&, 12] // Flatten (* _Jean-François Alcover_, Jul 19 2019 *) %o A106509 (Magma) %o A106509 T:= func< n,k | (&+[ (-1)^j*Binomial(2*n-k-j, j): j in [0..n-k]]) >; %o A106509 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Apr 28 2021 %o A106509 (Sage) %o A106509 def T(n,k): return sum( (-1)^j*binomial(2*n-k-j, j) for j in (0..n-k)) %o A106509 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Apr 28 2021 %Y A106509 Cf. A072405, A106510, A106511. %K A106509 easy,sign,tabl %O A106509 0,9 %A A106509 _Paul Barry_, May 04 2005