This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106516 #44 Mar 07 2025 06:27:26 %S A106516 1,3,1,9,4,1,27,13,5,1,81,40,18,6,1,243,121,58,24,7,1,729,364,179,82, %T A106516 31,8,1,2187,1093,543,261,113,39,9,1,6561,3280,1636,804,374,152,48,10, %U A106516 1,19683,9841,4916,2440,1178,526,200,58,11,1,59049,29524,14757,7356,3618,1704,726,258,69,12,1 %N A106516 A Pascal-like triangle based on 3^n. %C A106516 Row sums are A027649. Antidiagonal sums are A106517. %C A106516 From _Wolfdieter Lang_, Jan 09 2015: (Start) %C A106516 Alternating row sums give A025192. The A-sequence of this Riordan lower triangular matrix is [1, 1, repeat(0, )] (leading to the Pascal recurrence for T(n,k) for n >= k >= 1. The Z-sequence is [3, repeat(0, )] (leading to the recurrence T(n,0) = 3*T(n-1,0), n >= 1. For A- and Z-sequences see the W. Lang link under A006232. %C A106516 The inverse of this Riordan matrix is Tinv = ((1 - 2*x)/(1 + x), x/(1 + x)) given as a signed version of A093560: Tinv(n,m) = (-1)^(n-m)*A093560(n,m). (End) %F A106516 Riordan array (1/(1-3x), x/(1-x)); Number triangle T(n, 0)=A000244(n), T(n, k)=T(n-1, k-1)+T(n-1, k); T(n, k)=sum{j=0..n, binomial(n, k+j)2^j}. %F A106516 From _Peter Bala_, Jul 16 2013: (Start) %F A106516 T(n,k) = binomial(n,k) + 2*sum {i = 1..n} 3^(i-1)*binomial(n-i,k). %F A106516 O.g.f.: (1 - t)/( (1 - 3*t)*(1 - (1 + x)*t) ) = 1 + (3 + x)*t + (9 + 4*x + x^2)*t^2 + .... %F A106516 The n-th row polynomial R(n,x) = 1/(x - 2)*( x*(x + 1)^n - 2*3^n ). (End) %F A106516 Closed-form formula for arbitrary left and right borders of Pascal-like triangle see A228196. - _Boris Putievskiy_, Aug 19 2013 %F A106516 T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k) - 3*T(n-2,k-1), T(0,0)=1, T(1,0)=3, T(1,1)=1, T(n,k)=0 if k<0 or if k>n. - _Philippe Deléham_, Dec 26 2013 %F A106516 From _Peter Bala_, Dec 23 2014: (Start) %F A106516 exp(x) * e.g.f. for row n = e.g.f. for diagonal n. For example, for n = 3 we have exp(x)*(27 + 13*x + 5*x^2/2! + x^3/3!) = 27 + 40*x + 58*x^2/2! + 82*x^3/3! + 113*x^4/4! + .... The same property holds more generally for Riordan arrays of the form ( f(x), x/(1 - x) ). %F A106516 Let M denote the present triangle. For k = 0,1,2,... define M(k) to be the lower unit triangular block array %F A106516 /I_k 0\ %F A106516 \ 0 M/ having the k X k identity matrix I_k as the upper left block; in particular, M(0) = M. The infinite product M(0)*M(1)*M(2)*..., which is clearly well-defined, is equal to A143495 (but with a different offset). See the Example section. Cf. A055248. (End) %F A106516 n-th row polynomial R(n, x) = (2*3^n - x*(1 + x)^n)/(2 - x). - _Peter Bala_, Mar 05 2025 %e A106516 The triangle T(n,k) begins: %e A106516 n\k 0 1 2 3 4 5 6 7 8 9 10 ... %e A106516 0: 1 %e A106516 1: 3 1 %e A106516 2: 9 4 1 %e A106516 3: 27 13 5 1 %e A106516 4: 81 40 18 6 1 %e A106516 5: 243 121 58 24 7 1 %e A106516 6: 729 364 179 82 31 8 1 %e A106516 7: 2187 1093 543 261 113 39 9 1 %e A106516 8: 6561 3280 1636 804 374 152 48 10 1 %e A106516 9: 19683 9841 4916 2440 1178 526 200 58 11 1 %e A106516 10: 59049 29524 14757 7356 3618 1704 726 258 69 12 1 %e A106516 ... reformatted and extended. - _Wolfdieter Lang_, Jan 06 2015 %e A106516 ---------------------------------------------------------- %e A106516 With the array M(k) as defined in the Formula section, the infinite product M(0)*M(1)*M(2)*... begins %e A106516 / 1 \/1 \/1 \ /1 \ %e A106516 | 3 1 ||0 1 ||0 1 | | 3 1 | %e A106516 | 9 4 1 ||0 3 1 ||0 0 1 |... = | 9 7 1 | %e A106516 |27 13 5 1 ||0 9 4 1 ||0 0 3 1 | |27 37 12 1 | %e A106516 |... ||0 27 13 5 1 ||0 0 9 4 1| |... | %e A106516 |... ||... ||... | |... | %e A106516 = A143495. - _Peter Bala_, Dec 23 2014 %t A106516 a106516[n_] := Block[{a, k}, %t A106516 a[x_] := Flatten@ Last@ Reap[For[k = -1, k < x, Sow[Binomial[x, k] + %t A106516 2 Sum[3^(i - 1)*Binomial[x - i, k], {i, 1, x}]], k++]]; Flatten@Array[a, n, 0]]; a106516[11] (* _Michael De Vlieger_, Dec 23 2014 *) %Y A106516 Columns 1, 2, 3, 4, 5: A003462, A000340, A052150, A097786, A097787. %Y A106516 Cf. A055248, A143495. %K A106516 easy,nonn,tabl %O A106516 0,2 %A A106516 _Paul Barry_, May 05 2005