This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106522 #10 Aug 07 2021 01:13:19 %S A106522 1,1,1,2,2,1,4,4,3,1,7,8,7,4,1,13,15,15,11,5,1,24,28,30,26,16,6,1,44, %T A106522 52,58,56,42,22,7,1,81,96,110,114,98,64,29,8,1,149,177,206,224,212, %U A106522 162,93,37,9,1,274,326,383,430,436,374,255,130,46,10,1,504,600,709,813,866,810,629,385,176,56,11,1 %N A106522 A Pascal type matrix based on the tribonacci numbers. %C A106522 Row sums of A106522 mod 2 are A106524. %H A106522 G. C. Greubel, <a href="/A106522/b106522.txt">Rows n = 0..50 of the triangle, flattened</a> %F A106522 Riordan array (1/(1-x-x^2-x^3), x/(1-x)). %F A106522 Number triangle T(n, 0) = A000073(n+2), T(n, k) = T(n-1, k-1) + T(n-1, k). %F A106522 Sum_{k=0..n} T(n,k) = A001590(n+3). %F A106522 Sum_{k=0..floor(n/2)} T(n-k, k) = A106523(n). %e A106522 Triangle begins: %e A106522 1; %e A106522 1, 1; %e A106522 2, 2, 1; %e A106522 4, 4, 3, 1; %e A106522 7, 8, 7, 4, 1; %e A106522 13, 13, 15, 11, 5, 1; %t A106522 b[n_]:= b[n]= If[n<2, 0, If[n==2, 1, b[n-1] +b[n-2] +b[n-3]]]; (* A000073 *) %t A106522 T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0, b[n+2], T[n-1, k-1] +T[n-1, k]]]; %t A106522 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Aug 06 2021 *) %o A106522 (Sage) %o A106522 @CachedFunction %o A106522 def b(n): return 0 if (n<2) else 1 if (n==2) else b(n-1) +b(n-2) +b(n-3) %o A106522 def T(n,k): %o A106522 if (k<0 or k>n): return 0 %o A106522 elif (k==0): return b(n+2) %o A106522 else: return T(n-1, k) + T(n-1, k-1) %o A106522 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Aug 06 2021 %Y A106522 Cf. A000073, A001590 (row sums), A106523 (diagonal sums). %K A106522 easy,nonn,tabl %O A106522 0,4 %A A106522 _Paul Barry_, May 06 2005