cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106530 Least common multiple of all parts in Zeckendorf representation of n.

This page as a plain text file.
%I A106530 #27 Feb 16 2025 08:32:57
%S A106530 1,2,3,3,5,5,10,8,8,8,24,24,13,13,26,39,39,65,65,130,21,21,42,21,21,
%T A106530 105,105,210,168,168,168,168,168,34,34,34,102,102,170,170,170,136,136,
%U A106530 136,408,408,442,442,442,1326,1326,2210,2210,2210,55,55,110,165,165,55,55,110,440,440
%N A106530 Least common multiple of all parts in Zeckendorf representation of n.
%C A106530 Records: A106531(n) = a(A106532(n)).
%C A106530 a(n) = lcm_{k=0..A007895(n)-1} A035516(n,k). - _Reinhard Zumkeller_, Mar 10 2013
%H A106530 Alois P. Heinz, <a href="/A106530/b106530.txt">Table of n, a(n) for n = 1..16384</a> (first 10000 terms from Reinhard Zumkeller)
%H A106530 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ZeckendorfRepresentation.html">Zeckendorf Representation</a>
%H A106530 <a href="/index/Lc#lcm">Index entries for sequences related to lcm's</a>.
%e A106530 n=33: 21+8+3+1 = 33 -> a(33) = lcm(21,8,3,1) = (21*8*3*1)/3 = 168.
%p A106530 F:= combinat[fibonacci]:
%p A106530 a:= proc(n) option remember; local j;
%p A106530       if n=0 then 1
%p A106530     else for j from 2 while F(j+1)<=n do od;
%p A106530          ilcm(a(n-F(j)), F(j))
%p A106530       fi
%p A106530     end:
%p A106530 seq(a(n), n=1..64);  # _Alois P. Heinz_, Mar 17 2018
%t A106530 t = Fibonacci /@ Range@ 21; Table[LCM @@ If[MemberQ[t, n], {n}, Most@ MapAt[# + 1 &, Abs@ Differences@ FixedPointList[# - First@ Reverse@ TakeWhile[t, Function[k, # >= k]] &, n], -1]], {n, 61}] (* _Michael De Vlieger_, May 17 2016 *)
%o A106530 (Haskell)
%o A106530 a106530 = foldr lcm 1 . a035516_row -- _Reinhard Zumkeller_, Mar 10 2013
%Y A106530 Cf. A000045, A014417, A003714.
%K A106530 nonn,look
%O A106530 1,2
%A A106530 _Reinhard Zumkeller_, May 08 2005