This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106534 #45 Jan 12 2024 10:04:58 %S A106534 1,2,1,5,3,2,15,10,7,5,51,36,26,19,14,188,137,101,75,56,42,731,543, %T A106534 406,305,230,174,132,2950,2219,1676,1270,965,735,561,429,12235,9285, %U A106534 7066,5390,4120,3155,2420,1859,1430,51822,39587,30302,23236,17846,13726,10571,8151,6292,4862 %N A106534 Sum array of Catalan numbers (A000108) read by upward antidiagonals. %C A106534 The underlying array A is A(n, k) = Sum_{j=0..n} binomial(n, j)*A000108(k+j), n >= 0, k>= 0. See the example section. - _Wolfdieter Lang_, Oct 04 2019 %H A106534 G. C. Greubel, <a href="/A106534/b106534.txt">Rows n = 0..50 of the triangle, flattened</a> %H A106534 Paul Barry and A. Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry2/barry94r.html">The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences</a>, J. Int. Seq. 13 (2010) # 10.8.2, page 5. %F A106534 T(n, k) = 0 if k > n; T(n, n) = A000108(n); T(n, k) = T(n-1, k) + T(n, k+1) if 0 <= k < n. %F A106534 T(n, k) = binomial(2*k,k)/(k+1)*hypergeometric([k-n, k+1/2], [k+2], -4). - _Peter Luschny_, Aug 16 2012 %F A106534 T(n, k) = A(n-k, k) = Sum_{j=0..n-k} binomial(n-k, j)*A000108(k+j), n >= 0, k = 0..n. - _Wolfdieter Lang_, Oct 03 2019 %F A106534 G.f.: (sqrt(1-4*x*y)-sqrt((5*x-1)/(x-1)))/(2*x*(x*y-y+1)). - _Vladimir Kruchinin_, Jan 12 2024 %e A106534 From _Wolfdieter Lang_, Oct 04 2019: (Start) %e A106534 The triangle T(n, k) begins: %e A106534 n\k 0 1 2 3 4 5 6 7 8 9 10 ... %e A106534 0: 1 %e A106534 1: 2 1 %e A106534 2: 5 3 2 %e A106534 3: 15 10 7 5 %e A106534 4: 51 36 26 19 14 %e A106534 5: 188 137 101 75 56 42 %e A106534 6: 731 543 406 305 230 174 132 %e A106534 7: 2950 2219 1676 1270 965 735 561 429 %e A106534 8: 12235 9285 7066 5390 4120 3155 2420 1859 1430 %e A106534 9: 51822 39587 30302 23236 17846 13726 10571 8151 6292 4862 %e A106534 10: 223191 171369 131782 101480 78244 60398 46672 36101 27950 21658 16796 %e A106534 ... reformatted and extended. %e A106534 ------------------------------------------------------------------------- %e A106534 The array A(n, k) begins: %e A106534 n\k 0 1 2 3 4 5 6 ... %e A106534 ------------------------------------------- %e A106534 0: 1 1 2 5 14 42 132 ... A000108 %e A106534 1 2 3 7 19 56 174 561 ... A005807 %e A106534 2: 5 10 26 75 230 735 2420 ... %e A106534 3: 15 36 101 305 965 3155 10571 ... %e A106534 4: 51 137 406 1270 4120 13726 46672 ... %e A106534 5: 188 543 1676 5390 17846 60398 207963 ... %e A106534 ... (End) %p A106534 # Uses floating point, precision might have to be adjusted. %p A106534 C := n -> binomial(2*n,n)/(n+1); %p A106534 H := (n,k) -> hypergeom([k-n,k+1/2],[k+2],-4); %p A106534 T := (n,k) -> C(k)*H(n,k); %p A106534 seq(print(seq(round(evalf(T(n,k),32)),k=0..n)),n=0..7); %p A106534 # _Peter Luschny_, Aug 16 2012 %t A106534 T[n_, n_] := CatalanNumber[n]; T[n_, k_] /; 0 <= k < n := T[n-1, k] + T[n, k+1]; T[_, _] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* _Jean-François Alcover_, Jun 11 2019 *) %o A106534 (Sage) %o A106534 def T(n, k) : %o A106534 if k > n : return 0 %o A106534 if n == k : return binomial(2*n, n)/(n+1) %o A106534 return T(n-1, k) + T(n, k+1) %o A106534 A106534 = lambda n,k: T(n, k) %o A106534 for n in (0..5): [A106534(n,k) for k in (0..n)] # _Peter Luschny_, Aug 16 2012 %o A106534 (Magma) %o A106534 function T(n,k) %o A106534 if k gt n then return 0; %o A106534 elif k eq n then return Catalan(n); %o A106534 else return T(n-1, k) + T(n, k+1); %o A106534 end if; return T; %o A106534 end function; %o A106534 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Aug 18 2021 %Y A106534 Columns: A007317, A002212, see also A045868, A055452-A055455. %Y A106534 Diagonals: A000108, A005807. %Y A106534 Cf. A059346 (Catalan difference array as triangle). %K A106534 nonn,easy,tabl %O A106534 0,2 %A A106534 _Philippe Deléham_, May 30 2005