cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106534 Sum array of Catalan numbers (A000108) read by upward antidiagonals.

This page as a plain text file.
%I A106534 #45 Jan 12 2024 10:04:58
%S A106534 1,2,1,5,3,2,15,10,7,5,51,36,26,19,14,188,137,101,75,56,42,731,543,
%T A106534 406,305,230,174,132,2950,2219,1676,1270,965,735,561,429,12235,9285,
%U A106534 7066,5390,4120,3155,2420,1859,1430,51822,39587,30302,23236,17846,13726,10571,8151,6292,4862
%N A106534 Sum array of Catalan numbers (A000108) read by upward antidiagonals.
%C A106534 The underlying array A is A(n, k) = Sum_{j=0..n} binomial(n, j)*A000108(k+j), n >= 0, k>= 0. See the example section. - _Wolfdieter Lang_, Oct 04 2019
%H A106534 G. C. Greubel, <a href="/A106534/b106534.txt">Rows n = 0..50 of the triangle, flattened</a>
%H A106534 Paul Barry and A. Hennessy, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL13/Barry2/barry94r.html">The Euler-Seidel Matrix, Hankel Matrices and Moment Sequences</a>, J. Int. Seq. 13 (2010) # 10.8.2, page 5.
%F A106534 T(n, k) = 0 if k > n; T(n, n) = A000108(n); T(n, k) = T(n-1, k) + T(n, k+1) if 0 <= k < n.
%F A106534 T(n, k) = binomial(2*k,k)/(k+1)*hypergeometric([k-n, k+1/2], [k+2], -4). - _Peter Luschny_, Aug 16 2012
%F A106534 T(n, k) = A(n-k, k) = Sum_{j=0..n-k} binomial(n-k, j)*A000108(k+j), n >= 0, k = 0..n. - _Wolfdieter Lang_, Oct 03 2019
%F A106534 G.f.: (sqrt(1-4*x*y)-sqrt((5*x-1)/(x-1)))/(2*x*(x*y-y+1)). - _Vladimir Kruchinin_, Jan 12 2024
%e A106534 From _Wolfdieter Lang_, Oct 04 2019: (Start)
%e A106534 The triangle T(n, k) begins:
%e A106534 n\k      0      1      2      3     4     5     6     7     8     9    10 ...
%e A106534 0:       1
%e A106534 1:       2      1
%e A106534 2:       5      3      2
%e A106534 3:      15     10      7      5
%e A106534 4:      51     36     26     19    14
%e A106534 5:     188    137    101     75    56    42
%e A106534 6:     731    543    406    305   230   174   132
%e A106534 7:    2950   2219   1676   1270   965   735   561   429
%e A106534 8:   12235   9285   7066   5390  4120  3155  2420  1859  1430
%e A106534 9:   51822  39587  30302  23236 17846 13726 10571  8151  6292  4862
%e A106534 10: 223191 171369 131782 101480 78244 60398 46672 36101 27950 21658 16796
%e A106534 ... reformatted and extended.
%e A106534 -------------------------------------------------------------------------
%e A106534 The array A(n, k) begins:
%e A106534 n\k  0   1    2    3     4     5      6 ...
%e A106534 -------------------------------------------
%e A106534 0:   1   1    2    5    14    42    132 ... A000108
%e A106534 1    2   3    7   19    56   174    561 ... A005807
%e A106534 2:   5  10   26   75   230   735   2420 ...
%e A106534 3:  15  36  101  305   965  3155  10571 ...
%e A106534 4:  51 137  406 1270  4120 13726  46672 ...
%e A106534 5: 188 543 1676 5390 17846 60398 207963 ...
%e A106534 ... (End)
%p A106534 # Uses floating point, precision might have to be adjusted.
%p A106534 C := n -> binomial(2*n,n)/(n+1);
%p A106534 H := (n,k) -> hypergeom([k-n,k+1/2],[k+2],-4);
%p A106534 T := (n,k) -> C(k)*H(n,k);
%p A106534 seq(print(seq(round(evalf(T(n,k),32)),k=0..n)),n=0..7);
%p A106534 # _Peter Luschny_, Aug 16 2012
%t A106534 T[n_, n_] := CatalanNumber[n]; T[n_, k_] /; 0 <= k < n := T[n-1, k] + T[n, k+1]; T[_, _] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* _Jean-François Alcover_, Jun 11 2019 *)
%o A106534 (Sage)
%o A106534 def T(n, k) :
%o A106534     if k > n : return 0
%o A106534     if n == k : return binomial(2*n, n)/(n+1)
%o A106534     return T(n-1, k) + T(n, k+1)
%o A106534 A106534 = lambda n,k: T(n, k)
%o A106534 for n in (0..5): [A106534(n,k) for k in (0..n)] # _Peter Luschny_, Aug 16 2012
%o A106534 (Magma)
%o A106534 function T(n,k)
%o A106534   if k gt n then return 0;
%o A106534   elif k eq n then return Catalan(n);
%o A106534   else return T(n-1, k) + T(n, k+1);
%o A106534   end if; return T;
%o A106534 end function;
%o A106534 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Aug 18 2021
%Y A106534 Columns: A007317, A002212, see also A045868, A055452-A055455.
%Y A106534 Diagonals: A000108, A005807.
%Y A106534 Cf. A059346 (Catalan difference array as triangle).
%K A106534 nonn,easy,tabl
%O A106534 0,2
%A A106534 _Philippe Deléham_, May 30 2005