This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106580 #15 Sep 07 2021 09:34:33 %S A106580 1,1,1,1,2,2,1,2,3,3,1,2,5,7,7,1,2,5,9,12,12,1,2,5,13,22,29,29,1,2,5, %T A106580 13,26,41,53,53,1,2,5,13,34,65,101,130,130,1,2,5,13,34,73,129,194,247, %U A106580 247,1,2,5,13,34,89,185,322,481,611,611,1,2,5,13,34,89,201,386,645,945,1192,1192,1,2,5,13,34,89,233,514,973,1613,2354,2965,2965 %N A106580 Triangle T(n, k) = T(n, k-1) + Sum_{i >= 1} T(n-2i, k-i) with T(n,0)=1, read by rows. %C A106580 Next term is previous term + terms directly above you on a vertical line. %C A106580 An intermingling of two independent triangles, A106595 and A106596. %H A106580 G. C. Greubel, <a href="/A106580/b106580.txt">Rows n = 0..50 of the triangle, flattened</a> %F A106580 T(n, k) = T(n, k-1) + Sum_{i>=1} T(n-2*i, k-i), with T(n, 0) = 1. %e A106580 Triangle begins as: %e A106580 1; %e A106580 1, 1; %e A106580 1, 2, 2; %e A106580 1, 2, 3, 3; %e A106580 1, 2, 5, 7, 7; %e A106580 1, 2, 5, 9, 12, 12; %e A106580 1, 2, 5, 13, 22, 29, 29; %e A106580 1, 2, 5, 13, 26, 41, 53, 53; %e A106580 1, 2, 5, 13, 34, 65, 101, 130, 130; %p A106580 A106580:= proc(n,k) option remember; if k=0 then 1; else A106580(n,k-1) + add(A106580(n-2*i, k-i), i=1..min(k, floor(n/2), n-k)); fi ; end: for n from 0 to 12 do for k from 0 to n do printf("%d, ", A106580(n,k)); od; od; # _R. J. Mathar_, May 02 2007 %t A106580 t[_, 0]= 1; t[n_, k_]:= t[n, k] = t[n, k-1] + Sum[t[n-2j, k-j], {j, 1, Min[k, Floor[n/2], n-k]}]; Table[t[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _Jean-François Alcover_, Jan 08 2014, after Maple *) %o A106580 (Sage) %o A106580 @CachedFunction %o A106580 def T(n, k): %o A106580 if (k<0): return 0 %o A106580 elif (k==0): return 1 %o A106580 else: return T(n, k-1) + sum( T(n-2*j, k-j) for j in (1..min(k, n//2, n-k))) %o A106580 flatten([[T(n,k) for k in (0..n)] for n in (0..10)]) # _G. C. Greubel_, Sep 07 2021 %Y A106580 Cf. A106595, A106596. %K A106580 nonn,tabl,easy %O A106580 0,5 %A A106580 _N. J. A. Sloane_, May 30 2005 %E A106580 More terms from _R. J. Mathar_, May 02 2007