This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106595 #12 Sep 08 2021 01:27:46 %S A106595 1,1,1,2,3,3,1,2,5,9,12,12,1,2,5,13,26,41,53,53,1,2,5,13,34,73,129, %T A106595 194,247,247,1,2,5,13,34,89,201,386,645,945,1192,1192,1,2,5,13,34,89, %U A106595 233,546,1117,2021,3266,4705,5897,5897,1,2,5,13,34,89,233,610,1469,3157,6082,10593,16737,23826,29723,29723 %N A106595 Triangle read by rows: odd-numbered rows of A106580. %H A106595 G. C. Greubel, <a href="/A106595/b106595.txt">Rows n = 0..50 of the irregular triangle, flattened</a> %F A106595 T(n, k) = A106580(2*n+1, k). %e A106595 Irregular triangle begins as: %e A106595 1, 1; %e A106595 1, 2, 3, 3; %e A106595 1, 2, 5, 9, 12, 12; %e A106595 1, 2, 5, 13, 26, 41, 53, 53; %e A106595 1, 2, 5, 13, 34, 73, 129, 194, 247, 247; %e A106595 1, 2, 5, 13, 34, 89, 201, 386, 645, 945, 1192, 1192; %e A106595 1, 2, 5, 13, 34, 89, 233, 546, 1117, 2021, 3266, 4705, 5897, 5897; %p A106595 A106580 := proc(n,k) option remember ; if k =0 then 1 ; else A106580(n,k-1)+add(A106580(n-2*i,k-i),i=1..min(k,floor(n/2),n-k)) ; fi ; end: for n from 1 to 13 by 2 do for k from 0 to n do printf("%d, ",A106580(n,k)) ; od ; od ; # _R. J. Mathar_, May 02 2007 %t A106595 T[n_, k_]:= T[n, k]= If[k==0, 1, T[n, k-1] + Sum[T[n-2*j, k-j], {j, 1, Min[k, Floor[n/2], n-k]}]]; (* T(n, k) = A106580; T(2*n+1, k) = A106595 *) %t A106595 Table[T[2*n+1, k], {n, 0, 12}, {k, 0, 2*n+1}]//Flatten (* _G. C. Greubel_, Sep 08 2021 *) %o A106595 (Sage) %o A106595 @CachedFunction %o A106595 def T(n, k): # T(n, k) = A106580; T(2*n+1, k) = A106595 %o A106595 if (k<0): return 0 %o A106595 elif (k==0): return 1 %o A106595 else: return T(n, k-1) + sum( T(n-2*j, k-j) for j in (1..min(k, n//2, n-k))) %o A106595 flatten([[T(2*n+1, k) for k in (0..2*n+1)] for n in (0..12)]) # _G. C. Greubel_, Sep 08 2021 %Y A106595 Cf. A106580, A106585. %K A106595 nonn,tabf,easy %O A106595 0,4 %A A106595 _N. J. A. Sloane_, May 30 2005 %E A106595 More terms from _R. J. Mathar_, May 02 2007