This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106597 #37 Sep 10 2021 02:05:26 %S A106597 1,1,1,1,3,1,1,5,5,1,1,7,14,7,1,1,9,27,27,9,1,1,11,44,72,44,11,1,1,13, %T A106597 65,149,149,65,13,1,1,15,90,266,388,266,90,15,1,1,17,119,431,836,836, %U A106597 431,119,17,1,1,19,152,652,1585,2150,1585,652,152,19,1,1,21,189,937,2743,4753,4753,2743,937,189,21,1 %N A106597 Triangle T(n,k) = T(n-1, k-1) + T(n-1, k) + Sum_{i >= 1} T(n-2*i, k-i), with T(n, 0) = T(n, n) = 1, read by rows. %C A106597 Next term is sum of two terms above you in previous row (as in Pascal's triangle A007318) plus sum of terms directly above you on a vertical line. %C A106597 T(n,n-k) is the number of lattice paths from (0,0) to (n,k) using steps (1,0), (0,1), and (s,s) for s>=1. - _Joerg Arndt_, Jul 01 2011 %C A106597 Row sums gives A118649. - _Emanuele Munarini_, Feb 01 2017 %H A106597 G. C. Greubel, <a href="/A106597/b106597.txt">Rows n = 0..50 of the triangle, flattened</a> %F A106597 G.f.: (1-x^2*y)/(1-x-x*y-2*x^2*y+x^3*y+x^3*y^2). - _Emanuele Munarini_, Feb 01 2017 %e A106597 Triangle begins: %e A106597 1; %e A106597 1, 1; %e A106597 1, 3, 1; %e A106597 1, 5, 5, 1; %e A106597 1, 7, 14, 7, 1; %e A106597 1, 9, 27, 27, 9, 1; %e A106597 1, 11, 44, 72, 44, 11, 1; %e A106597 1, 13, 65, 149, 149, 65, 13, 1; %e A106597 1, 15, 90, 266, 388, 266, 90, 15, 1; %e A106597 1, 17, 119, 431, 836, 836, 431, 119, 17, 1; %t A106597 CoefficientList[#, y]& /@ CoefficientList[(1 -x^2*y)/(1 -x -x*y -2x^2*y +x^3*y + x^3*y^2) + O[x]^12, x]//Flatten (* _Jean-François Alcover_, Oct 30 2018, after _Emanuele Munarini_ *) %o A106597 (PARI) /* same as in A092566, but last line (output) replaced by the following */ %o A106597 /* show as triangle T(n-k,k): */ %o A106597 { for(n=0,N-1, for(k=0,n, print1(T(n-k,k),", "); ); print(); ); } %o A106597 /* _Joerg Arndt_, Jul 01 2011 */ %o A106597 (Sage) %o A106597 @CachedFunction %o A106597 def T(n, k): %o A106597 if (k<0): return 0 %o A106597 elif (k==0 or k==n): return 1 %o A106597 else: return + T(n-1, k-1) + T(n-1, k) + sum( T(n-2*j, k-j) for j in (1..min(k, n//2, n-k))) %o A106597 flatten([[T(n, k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Sep 08 2021 %Y A106597 Cf. A007318, A118649. %Y A106597 T(2n,n) gives A118650. %K A106597 nonn,tabl,easy %O A106597 0,5 %A A106597 _N. J. A. Sloane_, May 30 2005 %E A106597 More terms from _Joshua Zucker_, May 10 2006 %E A106597 Definition corrected by _Emilie Hogan_, Oct 15 2009