cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106618 a(n) = numerator of n/(n+17).

This page as a plain text file.
%I A106618 #38 Sep 08 2023 07:32:45
%S A106618 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,1,18,19,20,21,22,23,24,25,
%T A106618 26,27,28,29,30,31,32,33,2,35,36,37,38,39,40,41,42,43,44,45,46,47,48,
%U A106618 49,50,3,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,4,69,70,71,72,73,74
%N A106618 a(n) = numerator of n/(n+17).
%C A106618 a(n) <> n iff n = 17 * k, in this case, a(n) = k. - _Bernard Schott_, Feb 19 2019
%H A106618 G. C. Greubel, <a href="/A106618/b106618.txt">Table of n, a(n) for n = 0..10000</a>
%H A106618 <a href="/index/Rec#order_34">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-1).
%F A106618 Dirichlet g.f.: zeta(s-1)*(1 - 16/17^s). - _R. J. Mathar_, Apr 18 2011
%F A106618 a(n) = 2*a(n-17) - a(n-34). - _G. C. Greubel_, Feb 19 2019
%F A106618 From _Amiram Eldar_, Nov 25 2022: (Start)
%F A106618 Multiplicative with a(17^e) = 17^(e-1), and a(p^e) = p^e if p != 17.
%F A106618 Sum_{k=1..n} a(k) ~ (273/578) * n^2. (End)
%F A106618 Sum_{n>=1} (-1)^(n+1)/a(n) = 33*log(2)/17. - _Amiram Eldar_, Sep 08 2023
%p A106618 seq(numer(n/(n+17)),n=0..80); # _Muniru A Asiru_, Feb 19 2019
%t A106618 f[n_]:=Numerator[n/(n+17)];Array[f,100,0] (* _Vladimir Joseph Stephan Orlovsky_, Feb 17 2011 *)
%o A106618 (Sage) [lcm(n,17)/17 for n in range(0, 100)] # _Zerinvary Lajos_, Jun 12 2009
%o A106618 (Magma) [Numerator(n/(n+17)): n in [0..100]]; // _Vincenzo Librandi_, Apr 18 2011
%o A106618 (PARI) vector(100, n, n--; numerator(n/(n+17))) \\ _G. C. Greubel_, Feb 19 2019
%o A106618 (GAP) List([0..80],n->NumeratorRat(n/(n+17))); # _Muniru A Asiru_, Feb 19 2019
%Y A106618 Cf. Sequences given by the formula numerator(n/(n + k)): A026741 (k = 2), A051176 (k = 3), A060819 (k = 4), A060791 (k = 5), A060789 (k = 6), A106608 thru A106612 (k = 7 thru 11), A051724 (k = 12), A106614 thru A106621 (k = 13 thru 20).
%K A106618 nonn,easy,frac,mult
%O A106618 0,3
%A A106618 _N. J. A. Sloane_, May 15 2005