A106633 Number of ways to express n as k+l*m, with k, l, m all in the range [0..n].
1, 4, 8, 12, 17, 21, 27, 31, 37, 42, 48, 52, 60, 64, 70, 76, 83, 87, 95, 99, 107, 113, 119, 123, 133, 138, 144, 150, 158, 162, 172, 176, 184, 190, 196, 202, 213, 217, 223, 229, 239, 243, 253, 257, 265, 273, 279, 283, 295, 300, 308, 314, 322, 326, 336, 342, 352
Offset: 0
Examples
0+1*2 = 0+2*1 = 1+1*1 = 2+0*0 = 2+0*1 = 2+0*2 = 2+1*0 = 2+2*0 = 2, so a(2)=8. a(3)=12: 3+0*0, 3+0*m (6), 2+1*1, 1+2*1 (2), 0+3*1 (2).
Links
- R. J. Mathar, Table of n, a(n) for n = 0..1000
Programs
-
Maple
A106633 := proc(n) local a, k, l, m ; a := 0 ; for k from 0 to n do for l from 0 to n do if l = 0 then if k = n then a := a+n+1 ; end if; else m := (n-k)/l ; if type(m,'integer') then a := a+1 ; end if; end if; end do: end do: a ; end proc: # R. J. Mathar, Oct 17 2012
-
Mathematica
A106633[n_] := Module[{a, m}, a = 0; Do[If[l == 0, If[k == n, a = a + n + 1], m = (n - k)/l; If[IntegerQ[m], a = a + 1]], {k, 0, n}, {l, 0, n}]; a]; Table[A106633[n], {n, 0, 56}] (* Jean-François Alcover, Jun 10 2023, after R. J. Mathar *)
-
PARI
list(n)={ my(v=vector(n),t); for(i=2,n,for(j=1,min(n\i,i-1),v[i*j]+=2)); for(i=1,sqrtint(n),v[i^2]++); concat(1,vector(n,k,2*k+1+t+=v[k])) }; \\ Charles R Greathouse IV, Oct 17 2012
Formula
From Ridouane Oudra, Apr 22 2024: (Start)
a(n) = 2*n + 1 + Sum_{k=1..n} floor(n/k);
a(n) = 2*n + 1 + Sum_{k=1..n} tau(k);
Extensions
Definition clarified by N. J. A. Sloane, Jul 07 2012
Comments