cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A210000 Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n}.

Original entry on oeis.org

0, 6, 14, 30, 46, 78, 94, 142, 174, 222, 254, 334, 366, 462, 510, 574, 638, 766, 814, 958, 1022, 1118, 1198, 1374, 1438, 1598, 1694, 1838, 1934, 2158, 2222, 2462, 2590, 2750, 2878, 3070, 3166, 3454, 3598, 3790, 3918, 4238, 4334, 4670, 4830
Offset: 0

Views

Author

Clark Kimberling, Mar 16 2012

Keywords

Comments

a(n) is the number of 2 X 2 matrices having all terms in {0,1,...,n} and inverses with all terms integers.
Most sequences in the following guide count 2 X 2 matrices having all terms contained in the domain shown in column 2 and determinant d or permanent p or sum s of terms as indicated in column 3.
A059306 ... {0,1,...,n} ..... d=0
A171503 ... {0,1,...,n} ..... d=1
A210000 ... {0,1,...,n} .... |d|=1
A209973 ... {0,1,...,n} ..... d=2
A209975 ... {0,1,...,n} ..... d=3
A209976 ... {0,1,...,n} ..... d=4
A209977 ... {0,1,...,n} ..... d=5
A210282 ... {0,1,...,n} ..... d=n
A210283 ... {0,1,...,n} ..... d=n-1
A210284 ... {0,1,...,n} ..... d=n+1
A210285 ... {0,1,...,n} ..... d=floor(n/2)
A210286 ... {0,1,...,n} ..... d=trace
A280588 ... {0,1,...,n} ..... d=s
A106634 ... {0,1,...,n} ..... p=n
A210288 ... {0,1,...,n} ..... p=trace
A210289 ... {0,1,...,n} ..... p=(trace)^2
A280934 ... {0,1,...,n} ..... p=s
A210290 ... {0,1,...,n} ..... d>=0
A183761 ... {0,1,...,n} ..... d>0
A210291 ... {0,1,...,n} ..... d>n
A210366 ... {0,1,...,n} ..... d>=n
A210367 ... {0,1,...,n} ..... d>=2n
A210368 ... {0,1,...,n} ..... d>=3n
A210369 ... {0,1,...,n} ..... d is even
A210370 ... {0,1,...,n} ..... d is odd
A210371 ... {0,1,...,n} ..... d is even and >=0
A210372 ... {0,1,...,n} ..... d is even and >0
A210373 ... {0,1,...,n} ..... d is odd and >0
A210374 ... {0,1,...,n} ..... s=n+2
A210375 ... {0,1,...,n} ..... s=n+3
A210376 ... {0,1,...,n} ..... s=n+4
A210377 ... {0,1,...,n} ..... s=n+5
A210378 ... {0,1,...,n} ..... t is even
A210379 ... {0,1,...,n} ..... t is odd
A211031 ... {0,1,...,n} ..... d is in [-n,n]
A211032 ... {0,1,...,n} ..... d is in (-n,n)
A211033 ... {0,1,...,n} ..... d=0 (mod 3)
A211034 ... {0,1,...,n} ..... d=1 (mod 3)
A134506 ... {1,2,...,n} ..... d=0
A196227 ... {1,2,...,n} ..... d=1
A209979 ... {1,2,...,n} .... |d|=1
A197168 ... {1,2,...,n} ..... d=2
A210001 ... {1,2,...,n} ..... d=3
A210002 ... {1,2,...,n} ..... d=4
A210027 ... {1,2,...,n} ..... d=5
A211053 ... {1,2,...,n} ..... d=n
A211054 ... {1,2,...,n} ..... d=n-1
A211055 ... {1,2,...,n} ..... d=n+1
A055507 ... {1,2,...,n} ..... p=n
A211057 ... {1,2,...,n} ..... d is in [0,n]
A211058 ... {1,2,...,n} ..... d>=0
A211059 ... {1,2,...,n} ..... d>0
A211060 ... {1,2,...,n} ..... d>n
A211061 ... {1,2,...,n} ..... d>=n
A211062 ... {1,2,...,n} ..... d>=2n
A211063 ... {1,2,...,n} ..... d>=3n
A211064 ... {1,2,...,n} ..... d is even
A211065 ... {1,2,...,n} ..... d is odd
A211066 ... {1,2,...,n} ..... d is even and >=0
A211067 ... {1,2,...,n} ..... d is even and >0
A211068 ... {1,2,...,n} ..... d is odd and >0
A209981 ... {-n,....,n} ..... d=0
A209982 ... {-n,....,n} ..... d=1
A209984 ... {-n,....,n} ..... d=2
A209986 ... {-n,....,n} ..... d=3
A209988 ... {-n,....,n} ..... d=4
A209990 ... {-n,....,n} ..... d=5
A211140 ... {-n,....,n} ..... d=n
A211141 ... {-n,....,n} ..... d=n-1
A211142 ... {-n,....,n} ..... d=n+1
A211143 ... {-n,....,n} ..... d=n^2
A211140 ... {-n,....,n} ..... p=n
A211145 ... {-n,....,n} ..... p=trace
A211146 ... {-n,....,n} ..... d in [0,n]
A211147 ... {-n,....,n} ..... d>=0
A211148 ... {-n,....,n} ..... d>0
A211149 ... {-n,....,n} ..... d<0 or d>0
A211150 ... {-n,....,n} ..... d>n
A211151 ... {-n,....,n} ..... d>=n
A211152 ... {-n,....,n} ..... d>=2n
A211153 ... {-n,....,n} ..... d>=3n
A211154 ... {-n,....,n} ..... d is even
A211155 ... {-n,....,n} ..... d is odd
A211156 ... {-n,....,n} ..... d is even and >=0
A211157 ... {-n,....,n} ..... d is even and >0
A211158 ... {-n,....,n} ..... d is odd and >0

Examples

			a(2)=6 counts these matrices (using reduced matrix notation):
(1,0,0,1), determinant = 1, inverse = (1,0,0,1)
(1,0,1,1), determinant = 1, inverse = (1,0,-1,1)
(1,1,0,1), determinant = 1, inverse = (1,-1,0,1)
(0,1,1,0), determinant = -1, inverse = (0,1,1,0)
(0,1,1,1), determinant = -1, inverse = (-1,1,1,0)
(1,1,1,0), determinant = -1, inverse = (0,1,1,-1)
		

Crossrefs

Cf. A171503.
See also the very useful list of cross-references in the Comments section.

Programs

  • Mathematica
    a = 0; b = n; z1 = 50;
    t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
    c[n_, k_] := c[n, k] = Count[t[n], k]
    Table[c[n, 0], {n, 0, z1}]  (* A059306 *)
    Table[c[n, 1], {n, 0, z1}]  (* A171503 *)
    2 %                         (* A210000 *)
    Table[c[n, 2], {n, 0, z1}]  (* A209973 *)
    %/4                         (* A209974 *)
    Table[c[n, 3], {n, 0, z1}]  (* A209975 *)
    Table[c[n, 4], {n, 0, z1}]  (* A209976 *)
    Table[c[n, 5], {n, 0, z1}]  (* A209977 *)

Formula

a(n) = 2*A171503(n).

Extensions

A209982 added to list in comment by Chai Wah Wu, Nov 27 2016

A106633 Number of ways to express n as k+l*m, with k, l, m all in the range [0..n].

Original entry on oeis.org

1, 4, 8, 12, 17, 21, 27, 31, 37, 42, 48, 52, 60, 64, 70, 76, 83, 87, 95, 99, 107, 113, 119, 123, 133, 138, 144, 150, 158, 162, 172, 176, 184, 190, 196, 202, 213, 217, 223, 229, 239, 243, 253, 257, 265, 273, 279, 283, 295, 300, 308, 314, 322, 326, 336, 342, 352
Offset: 0

Views

Author

Ralf Stephan, May 06 2005

Keywords

Comments

Number of ordered triples [k,l,m] with n = k+l*m and k, l, m all in the range [0..n].
From R. J. Mathar, Jun 30 2013: (Start)
A010766 is the following array A read by antidiagonals:
1, 1, 1, 1, 1, 1, ...
2, 1, 1, 1, 1, 1, ...
3, 2, 1, 1, 1, 1, ...
4, 2, 2, 1, 1, 1, ...
5, 3, 2, 2, 1, 1, ...
6, 3, 2, 2, 2, 1, ...
and apparently a(n) is the hook sum Sum_{k=0..n} A(n,k) + Sum_{r=0..n-1} A(r,n). (End)

Examples

			0+1*2 = 0+2*1 = 1+1*1 = 2+0*0 = 2+0*1 = 2+0*2 = 2+1*0 = 2+2*0 = 2, so a(2)=8.
a(3)=12: 3+0*0, 3+0*m (6), 2+1*1, 1+2*1 (2), 0+3*1 (2).
		

Crossrefs

Programs

  • Maple
    A106633 := proc(n)
        local a, k, l, m ;
        a := 0 ;
        for k from 0 to n do
            for l from 0 to n do
                if l = 0 then
                    if k = n then
                        a := a+n+1 ;
                    end if;
                else
                    m := (n-k)/l ;
                    if type(m,'integer') then
                        a := a+1 ;
                    end if;
                end if;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 17 2012
  • Mathematica
    A106633[n_] := Module[{a, m}, a = 0; Do[If[l == 0, If[k == n, a = a + n + 1], m = (n - k)/l; If[IntegerQ[m], a = a + 1]], {k, 0, n}, {l, 0, n}]; a];
    Table[A106633[n], {n, 0, 56}] (* Jean-François Alcover, Jun 10 2023, after R. J. Mathar *)
  • PARI
    list(n)={
        my(v=vector(n),t);
        for(i=2,n,for(j=1,min(n\i,i-1),v[i*j]+=2));
        for(i=1,sqrtint(n),v[i^2]++);
        concat(1,vector(n,k,2*k+1+t+=v[k]))
    }; \\ Charles R Greathouse IV, Oct 17 2012

Formula

From Ridouane Oudra, Apr 22 2024: (Start)
a(n) = 2*n + 1 + Sum_{k=1..n} floor(n/k);
a(n) = 2*n + 1 + Sum_{k=1..n} tau(k);
a(n) = A005408(n) + A006218(n). (End)

Extensions

Definition clarified by N. J. A. Sloane, Jul 07 2012

A106846 a(n) = Sum_{k + l*m <= n} (k + l*m), with 0 <= k,l,m <= n.

Original entry on oeis.org

0, 4, 22, 64, 144, 269, 461, 720, 1072, 1522, 2092, 2774, 3626, 4614, 5776, 7126, 8694, 10445, 12461, 14684, 17204, 19997, 23077, 26412, 30156, 34206, 38600, 43352, 48532, 54042, 60072, 66458, 73338, 80664, 88450, 96710, 105638, 114999
Offset: 0

Views

Author

Ralf Stephan, May 06 2005

Keywords

Crossrefs

Programs

  • Maple
    A106846 := proc(n)
        local a,k,l,m ;
        a := 0 ;
        for k from 0 to n do
            for l from 0 to n do
                if l = 0 then
                    m := n ;
                else
                    m := floor((n-k)/l) ;
                end if;
                if m >=0 then
                    m := min(m,n) ;
                    a := a+(m+1)*k+l*m*(m+1)/2 ;
                end if;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 17 2012
  • Mathematica
    A106846[n_] := Module[{a, k, l, m }, a = 0; For[k = 0, k <= n, k++, For[l = 0, l <= n, l++, If[l == 0, m = n, m = Floor[(n - k)/l]]; If[m >= 0, m = Min[m, n]; a = a + (m + 1)*k + l*m*(m + 1)/2 ]]]; a];
    Table[A106846[n], {n, 0, 40}] (* Jean-François Alcover, Apr 04 2024, after R. J. Mathar *)

Formula

From Ridouane Oudra, Jun 24 2024: (Start)
a(n) = (1/2) * (n*(n+1)*(2*n+1) + Sum_{k=1..n} (n^2 + n + k - k^2) * tau(k)).
a(n) = (1/2) * (A055112(n) + (n^2 + n) * A006218(n) + A143127(n) - A319085(n)).
a(n) = A059270(n) + A143127(n) + A106847(n). (End)

A106847 a(n) = Sum {k + j*m <= n} (k + j*m), with 0 < k,j,m <= n.

Original entry on oeis.org

0, 0, 2, 11, 31, 71, 131, 229, 357, 537, 767, 1064, 1412, 1867, 2385, 3000, 3720, 4570, 5506, 6608, 7808, 9194, 10734, 12436, 14260, 16360, 18622, 21079, 23739, 26668, 29758, 33199, 36815, 40742, 44924, 49369, 54085, 59265, 64661, 70355
Offset: 0

Views

Author

Ralf Stephan, May 06 2005

Keywords

Examples

			We have 1+1*1=2<=3, 1+2*1=3, 1+1*2=3, 2+1*1=3, thus a(3)=2+3+3+3=11.
		

Crossrefs

Cf. A106633, A106634, A106846, A078567 (number of terms).

Programs

  • Maple
    A106847 := proc(n)
        local a,k,l,m ;
        a := 0 ;
        for k from 1 to n do
            for l from 1 to n-k do
                m := floor((n-k)/l) ;
                if m >=1 then
                    m := min(m,n) ;
                    a := a+m*k+l*m*(m+1)/2 ;
                end if;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 17 2012
  • Mathematica
    A106847[n_] := Module[{a, k, l, m}, a = 0; For[k = 1, k <= n, k++, For[l = 1, l <= n - k, l++, If[l == 0, m = n, m = Floor[(n - k)/l]]; If[m >= 1, m = Min[m, n]; a = a + m*k + l*m*(m + 1)/2]]]; a];
    Table[A106847[n], {n, 0, 40}] (* Jean-François Alcover, Apr 04 2024, after R. J. Mathar *)
  • PARI
    A106847(n)=sum(m=1,n-1,sum(k=1,(n-1)\m,(n-m*k)*(n+m*k+1)))/2  \\ M. F. Hasler, Oct 17 2012

Formula

From Ridouane Oudra, Jun 02 2024: (Start)
a(n) = (1/2)*Sum_{k=1..n} (n^2 + n - k^2 - k)*tau(k);
a(n) = (1/2)*(n^2 + n)*A006218(n) - Sum_{k=1..n} A143272(k);
a(n) = (1/2)*((n + 1)*A143274(n) - A143127(n) - A319085(n)). (End)
a(n) ~ n^3 * (log(n) + 2*gamma - 4/3)/3, where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jun 15 2024
Showing 1-4 of 4 results.