This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106727 #23 Sep 11 2021 15:12:14 %S A106727 9,7,1,1,3,9,9,7,1,9,3,9,7,3,1,1,3,9,1,7,9,3,9,7,3,1,7,1,7,1,3,7,9,3, %T A106727 9,1,9,7,1,9,3,1,3,7,9,7,1,3,7,9,3,9,1,7,1,1,3,9,1,7,9,7,3,1,3,9,9,7, %U A106727 1,9,3,1,3,7,9,7,1,9,1,3,9,1,7,9,7,3,1,3,9,1,9 %N A106727 Triangle T(n,k) = (f(n+1)*f(k+1) mod 10), where f(j) = 10 - (prime(j+3) mod 10), read by rows. %H A106727 G. C. Greubel, <a href="/A106727/b106727.txt">Rows n = 0..50 of the triangle, flattened</a> %F A106727 T(n, k) = (f(n+1)*f(k+1) mod 10) where f(j) = 10 - (prime(j+3) mod 10). %e A106727 Triangle begins: %e A106727 9; %e A106727 7, 1; %e A106727 1, 3, 9; %e A106727 9, 7, 1, 9; %e A106727 3, 9, 7, 3, 1; %e A106727 1, 3, 9, 1, 7, 9; %e A106727 3, 9, 7, 3, 1, 7, 1; %t A106727 f[n_]:= 10 - Mod[Prime[n+3], 10]; %t A106727 Table[Mod[f[n+1]*f[k+1], 10], {n,0,15}, {k,0,n}]//Flatten %o A106727 (Sage) %o A106727 def f(n): return 10 - (nth_prime(n+3)%10) %o A106727 def A106727(n,k): return (f(n+1)*f(k+1))%10 %o A106727 flatten([[A106727(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Sep 10 2021 %Y A106727 Cf. A007652, A072003. %K A106727 nonn,easy,base,less,tabl %O A106727 0,1 %A A106727 _Roger L. Bagula_, May 14 2005