cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106736 Primes of the form r(r(r(r(n)+1)+1)+1)+1, where A141468(n) = r(n) = n-th nonprime.

Original entry on oeis.org

2, 23, 37, 67, 71, 101, 103, 109, 127, 137, 139, 151, 157, 179, 191, 197, 199, 211, 227, 233, 239, 241, 257, 263, 271, 277, 281, 283, 311, 331, 347, 353, 359, 367, 373, 379, 389, 401, 419, 431, 443, 457, 461, 467, 499, 503, 509, 521, 523, 541, 547, 557, 563
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 25 2008

Keywords

Examples

			n=1:
r(r(r(r(1)+1)+1)+1)+1=r(r(r(0+1)+1)+1)+1=r(r(r(1)+1)+1)+1=r(r(0+1)+1)+1=r(r(1)+1)+1=r(0+1)+1=r(1)+1=0+1=1
(nonprime).
n=2:
r(r(r(r(2)+1)+1)+1)+1=r(r(r(1+1)+1)+1)+1=r(r(r(2)+1)+1)+1=r(r(1+1)+1)+1=r(r(2)+1)+1=r(1+1)+1=r(2)+1=1+1=2=a(1).
n=3:
r(r(r(r(3)+1)+1)+1)+1=r(r(r(4+1)+1)+1)+1=r(r(r(5)+1)+1)+1=r(r(8+1)+1)+1=r(r(9)+1)+1=r(14+1)+1=r(15)+1=22+1=23=a(2).
n=4:
r(r(r(r(4)+1)+1)+1)+1=r(r(r(6+1)+1)+1)+1=r(r(r(7)+1)+1)+1=r(r(10+1)+1)+1=r(r(11)+1)+1=r(16+1)+1=r(17)+1=25+1=26
(nonprime).
n=5:
r(r(r(r(5)+1)+1)+1)+1=r(r(r(8+1)+1)+1)+1=r(r(r(9)+1)+1)+1=r(r(14+1)+1)+1=r(r(15)+1)+1=r(22+1)+1=r(23)+1=33+1=34
(nonprime).
n=6:
r(r(r(r(6)+1)+1)+1)+1=r(r(r(9+1)+1)+1)+1=r(r(r(10)+1)+1)+1=r(r(15+1)+1)+1=r(r(16)+1)+1=r(24+1)+1=r(25)+1
35+1=36 (nonprime).
n=7:
r(r(r(r(7)+1)+1)+1)+1=r(r(r(10+1)+1)+1)+1=r(r(r(11)+1)+1)+1=r(r(16+1)+1)+1=r(r(17)+1)+1=r(25+1)+1=r(26)+1
36+1=37=a(3).
n=8:
r(r(r(r(8)+1)+1)+1)+1=r(r(r(12+1)+1)+1)+1=r(r(r(13)+1)+1)+1=r(r(20+1)+1)+1=r(r(21)+1)+1=r(30+1)+1=r(31)+1=44+1=45
(nonprime).
n=9:
r(r(r(r(9)+1)+1)+1)+1=r(r(r(14+1)+1)+1)+1=r(r(r(15)+1)+1)+1=r(r(22+1)+1)+1=r(r(23)+1)+1=r(33+1)+1=r(34)+1
48+1=49 (nonprime).
n=10:
r(r(r(r(10)+1)+1)+1)+1=r(r(r(15+1)+1)+1)+1=r(r(r(16)+1)+1)+1=r(r(24+1)+1)+1=r(r(25)+1)+1=r(35+1)+1=r(36)+1
50+1=51(nonprime)
n=11:
r(r(r(r(11)+1)+1)+1)+1=r(r(r(16+1)+1)+1)+1=r(r(r(17)+1)+1)+1=r(r(25+1)+1)+1=r(r(26)+1)+1=r(36+1)+1=r(37)+1=51+1=52(nonprime),
etc.
		

Crossrefs

Programs

  • Maple
    A141468 := proc(n) option remember ; if n = 1 then 0; else for a from procname(n-1)+1 do if not isprime(a) then RETURN(a); fi; od: fi; end: rep := 4: for n from 1 to 400 do arep := n ; for i from 1 to rep do arep := A141468(arep)+1 ; od: if isprime(arep) then printf("%d,",arep) ; fi; od: # R. J. Mathar, Sep 05 2008

Extensions

97 removed and extended by R. J. Mathar, Sep 05 2008