This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106740 #11 Sep 18 2021 04:22:54 %S A106740 2,1,3,1,1,5,2,1,1,8,1,1,1,1,13,1,3,1,1,1,21,2,1,1,2,1,1,34,1,1,5,1,1, %T A106740 1,1,55,1,1,1,1,1,1,1,1,89,2,3,1,8,1,3,2,1,1,144,1,1,1,1,1,1,1,1,1,1, %U A106740 233,1,1,1,1,13,1,1,1,1,1,1,377,2,1,5,2,1,1,2,5,1,2,1,1,610 %N A106740 Triangle read by rows: greatest common divisors of pairs of Fibonacci numbers greater than 1: T(n, k) = gcd(Fibonacci(n), Fibonacci(k)). %H A106740 G. C. Greubel, <a href="/A106740/b106740.txt">Rows n = 3..52 of the triangle, flattened</a> %F A106740 T(n, k) = gcd(A000045(n), A000045(k)) for n >= 3 and 3 <= k <= n. %F A106740 T(n, 3) = abs(A061347(n)). %F A106740 T(n, 4) = A093148(n-1). %F A106740 T(n, n) = A000045(n). %F A106740 From _G. C. Greubel_, Sep 11 2021: (Start) %F A106740 T(n, 3) = A131534(n-2). %F A106740 T(n, 5) = A060904(n). %F A106740 T(n, 6) = A010125(n). %F A106740 T(n, n-1) = T(n, n-2) = A000012(n). %F A106740 T(n, n-3) = A093148(n-5). %F A106740 T(n, n-4) = A093148(n-5). %F A106740 T(n, n-5) = A060904(n-5). %F A106740 T(n, n-6) = A010125(n-6). (End) %e A106740 Triangle begins as: %e A106740 2; %e A106740 1, 3; %e A106740 1, 1, 5; %e A106740 2, 1, 1, 8; %e A106740 1, 1, 1, 1, 13; %e A106740 1, 3, 1, 1, 1, 21; %e A106740 2, 1, 1, 2, 1, 1, 34; %e A106740 1, 1, 5, 1, 1, 1, 1, 55; %e A106740 1, 1, 1, 1, 1, 1, 1, 1, 89; %e A106740 2, 3, 1, 8, 1, 3, 2, 1, 1, 144; %e A106740 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 233; %e A106740 1, 1, 1, 1, 13, 1, 1, 1, 1, 1, 1, 377; %e A106740 2, 1, 5, 2, 1, 1, 2, 5, 1, 2, 1, 1, 610; %t A106740 T[n_, k_]:= GCD[Fibonacci[n], Fibonacci[k]]; %t A106740 Table[T[n, k], {n,3,18}, {k,3,n}]//Flatten (* _G. C. Greubel_, Sep 11 2021 *) %o A106740 (Sage) %o A106740 def T(n,k): return gcd(fibonacci(n), fibonacci(k)) %o A106740 flatten([[T(n,k) for k in (3..n)] for n in (3..18)]) # _G. C. Greubel_, Sep 11 2021 %Y A106740 Cf. A000012, A000045, A010125, A060904, A061347, A093148, A131534. %K A106740 nonn,tabl %O A106740 3,1 %A A106740 _Reinhard Zumkeller_, May 15 2005