This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106796 #24 Apr 05 2022 03:26:32 %S A106796 1,1,2,1,1,2,3,1,1,2,1,1,2,3,1,4,1,1,2,1,1,2,3,1,1,2,1,1,2,3,1,4,1,1, %T A106796 2,1,1,1,2,1,1,2,3,1,1,2,1,1,2,3,1,4,1,1,2,1,1,2,3,1,1,2,1,1,2,3,1,4, %U A106796 1,1,2,1,1,1,2,1,1,2,3,1,1,2,1,1,2,1,1,2,3,1,1,2,1,1,2,3,1,4,1,1,2,1,1,2,3 %N A106796 Fixed point of the morphism 1 -> 1,1,2; 2 -> 3; 3 -> 1,4; 4 -> 1, starting with a(0) = 1. %C A106796 4-symbol substitution for the Pisot characteristic polynomial: x^4 - 2*x^2 - x - 1. %H A106796 G. C. Greubel, <a href="/A106796/b106796.txt">Table of n, a(n) for n = 0..10000</a> %H A106796 Victor F. Sirvent and Boris Solomyak, <a href="https://doi.org/10.4153/CMB-2002-062-3">Pure Discrete Spectrum for One-dimensional Substitution Systems of Pisot Type</a>. Canadian Mathematical Bulletin, 45(4), 2002, 697-710; (page 709 example 3). Also at <a href="https://www.researchgate.net/publication/228561314_Pure_Discrete_Spectrum_for_One-dimensional_Substitution_Systems_of_Pisot_Type">ResearchGate</a> %H A106796 <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a> %e A106796 The first few steps of the substitution are: %e A106796 Start: 1 %e A106796 Maps: %e A106796 1 --> 1 1 2 %e A106796 2 --> 3 %e A106796 3 --> 1 4 %e A106796 4 --> 1 %e A106796 ------------- %e A106796 0: (#=1) %e A106796 1 %e A106796 1: (#=3) %e A106796 112 %e A106796 2: (#=7) %e A106796 1121123 %e A106796 3: (#=16) %e A106796 1121123112112314 %e A106796 4: (#=36) %e A106796 112112311211231411211231121123141121 %e A106796 5: (#=82) %e A106796 1121123112112314112112311211231411211121123112112314112112311211231411211121123112 %t A106796 s[1]= {1, 1, 2}; s[2]= {3}; s[3]= {1, 4}; s[4]= {1}; t[b_]:= Flatten[s /@ b]; %t A106796 a[0]= {1}; a[1]= t[p[0]]; a[n_]:= t[a[n-1]]; %t A106796 a[10] %Y A106796 Cf. A106749, A106795, A106797, A106798. %K A106796 nonn %O A106796 0,3 %A A106796 _Roger L. Bagula_, May 17 2005 %E A106796 Edited by _G. C. Greubel_, Apr 03 2022