This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106797 #19 Apr 05 2022 03:25:14 %S A106797 1,1,1,1,2,2,3,1,1,1,1,2,2,3,1,1,1,1,2,2,3,1,1,1,1,2,2,3,4,1,4,1,2,1, %T A106797 1,1,1,1,1,1,2,2,3,1,1,1,1,2,2,3,1,1,1,1,2,2,3,1,1,1,1,2,2,3,4,1,4,1, %U A106797 2,1,1,1,1,1,1,1,2,2,3,1,1,1,1,2,2,3,1,1,1,1,2,2,3,1,1,1,1,2,2,3,4,1,4,1,2 %N A106797 Fixed point of the morphism 1 -> 1,1,1,1,2,2,3; 2 -> 4,1; 3 -> 2,1,1,1; 4 -> 1,2,1 starting with a(0) = 1. %C A106797 4-symbol substitution of the Pisot characteristic polynomial: x^4 - 4*x^3 - 6*x^2 - x - 1. %H A106797 G. C. Greubel, <a href="/A106797/b106797.txt">Table of n, a(n) for n = 0..10000</a> %H A106797 Victor F. Sirvent and Boris Solomyak, <a href="https://doi.org/10.4153/CMB-2002-062-3">Pure Discrete Spectrum for One-dimensional Substitution Systems of Pisot Type</a>. Canadian Mathematical Bulletin, 45(4), 2002, 697-710; (page 709 example 4). Also at <a href="https://www.researchgate.net/publication/228561314_Pure_Discrete_Spectrum_for_One-dimensional_Substitution_Systems_of_Pisot_Type">ResearchGate</a> %H A106797 <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a> %e A106797 The first few steps of the substitution are: %e A106797 Start: 1 %e A106797 Maps: %e A106797 1 --> 1 1 1 1 2 2 3 %e A106797 2 --> 4 1 %e A106797 3 --> 2 1 1 1 %e A106797 4 --> 1 2 1 %e A106797 ------------- %e A106797 0: (#=1) %e A106797 1 %e A106797 1: (#=7) %e A106797 1111223 %e A106797 2: (#=36) %e A106797 111122311112231111223111122341412111 %t A106797 s[1]= {1,1,1,1,2,2,3}; s[2]= {4,1}; s[3]= {2,1,1,1}; s[4]= {1,2,1}; %t A106797 t[a_]:= Flatten[s /@ a]; p[0]= {1}; p[1]= t[p[0]]; p[n_]:= t[p[n-1]]; p[3] %Y A106797 Cf. A106749, A106795, A106796, A106798. %K A106797 nonn %O A106797 0,5 %A A106797 _Roger L. Bagula_, May 17 2005 %E A106797 Edited by _G. C. Greubel_, Apr 03 2022