This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106798 #23 Apr 05 2022 03:25:43 %S A106798 1,2,3,1,2,2,1,2,2,3,1,2,2,1,2,3,1,2,2,1,2,2,3,1,2,2,1,2,2,1,2,3,1,2, %T A106798 2,1,2,2,3,1,2,2,1,2,2,3,1,2,2,1,2,3,1,2,2,1,2,2,3,1,2,2,1,2,2,1,2,3, %U A106798 1,2,2,1,2,2,3,1,2,2,1,2,3,1,2,2,1,2,2,3,1,2,2,1,2,2,1,2,3,1,2,2,1,2,2,3,1 %N A106798 Fixed point of the morphism 1 -> 3; 2 -> 1,2,2; 3 -> 1,2, starting with a(0) = 1. %C A106798 3-symbol substitution for the characteristic polynomial: x^3 - 2*x^2 - x + 1. %H A106798 G. C. Greubel, <a href="/A106798/b106798.txt">Table of n, a(n) for n = 0..10000</a> %H A106798 Victor F. Sirvent and Boris Solomyak, <a href="https://doi.org/10.4153/CMB-2002-062-3">Pure Discrete Spectrum for One-dimensional Substitution Systems of Pisot Type</a>. Canadian Mathematical Bulletin, 45(4), 2002, 697-710. Also at <a href="https://www.researchgate.net/publication/228561314_Pure_Discrete_Spectrum_for_One-dimensional_Substitution_Systems_of_Pisot_Type">ResearchGate</a> %H A106798 <a href="/index/Fi#FIXEDPOINTS">Index entries for sequences that are fixed points of mappings</a> %F A106798 a(n) = p(2*n), where p(n) maps the fixed point morphism 1 -> 3; 2 -> 1,2,2; 3 -> 1,2, starting with p(0) = 1. %e A106798 The first few steps of the substitution are: %e A106798 Start: 1 %e A106798 Maps: %e A106798 1 --> 3 %e A106798 2 --> 1 2 2 %e A106798 3 --> 1 2 %e A106798 ------------- %e A106798 a(n) = p(2*n) %e A106798 ------------- %e A106798 0: (#=1) (p(0)) %e A106798 1 %e A106798 1: (#=2) (p(2)) %e A106798 12 %e A106798 2: (#=9) (p(4)) %e A106798 123122122 %e A106798 3: (#=45) (p(6)) %e A106798 123122122312212312212231221221231221223122122 %t A106798 s[1]= {3}; s[2]= {1,2,2}; s[3]= {1,2}; t[b_]:= Flatten[s /@ b]; %t A106798 p[0]= {1}; p[1]= t[p[0]]; p[n_]:= t[p[n-1]]; %t A106798 a[n_]:= p[2*n]; %t A106798 a[4] %Y A106798 Cf. A106749, A106795, A106796, A106797. %K A106798 nonn,less %O A106798 0,2 %A A106798 _Roger L. Bagula_, May 17 2005 %E A106798 Edited by _G. C. Greubel_, Apr 03 2022