This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106823 #9 Sep 18 2021 03:52:46 %S A106823 1,1,1,0,1,1,1,1,0,0,0,1,1,2,2,2,1,1,0,0,0,0,0,0,1,1,2,3,3,3,3,2,1,1, %T A106823 0,0,0,0,0,0,0,0,0,0,1,1,2,3,4,4,5,4,4,3,2,1,1,0,0,0,0,0,0,0,0,0,0,0, %U A106823 0,0,0,0,1,1,2,3,4,5,6,6,6,6,5,4,3,2,1,1 %N A106823 Triangle read by rows: g.f. for row r is Product( (x^i-x^(r+1))/(1-x^i), i = 1..r-2). %D A106823 See A008968 for references. %H A106823 G. C. Greubel, <a href="/A106823/b106823.txt">Rows n = 0..25 of the irregular triangle, flattened</a> %e A106823 Initial rows are: %e A106823 [1] %e A106823 [1] %e A106823 [1] %e A106823 [0, 1, 1, 1, 1] %e A106823 [0, 0, 0, 1, 1, 2, 2, 2, 1, 1] %e A106823 [0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1] %e A106823 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 2, 3, 4, 4, 5, 4, 4, 3, 2, 1, 1] %p A106823 f3:=r->mul( (x^i-x^(r+1))/(1-x^i), i = 1..r-3); for r from 1 to 10 do series(f3(r),x,50); od: %t A106823 f[n_, x_]:= Product[(x^j -x^(n+2))/(1-x^j), {j, n-2}]; %t A106823 T[n_]:= CoefficientList[f[n, x], x]; %t A106823 Table[T[n], {n, 0, 10}]//Flatten (* _G. C. Greubel_, Sep 14 2021 *) %Y A106823 If the initial zeros in each row are omitted, we get A008968. %Y A106823 Cf. A008967, A008968, A106822. %K A106823 nonn,tabf %O A106823 0,14 %A A106823 _N. J. A. Sloane_, May 20 2005