A106824 Trajectory of 1 under the morphism 1->13, 2->13223, 3->1323.
1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1, 3, 2, 2, 3, 1, 3, 2, 3, 1, 3, 1, 3, 2, 3, 1
Offset: 0
Links
- J. M. Dumont and A. Thomas, Digital sum problems and substitutions on a finite alphabet, J. Number Theory, 39 (1991), 351-366.
- Index entries for sequences that are fixed points of mappings
Crossrefs
Cf. A229215.
Programs
-
Maple
S:={1=[1,3],2=[1,3,2,2,3],3=[1,3,2,3]}:subs(S,1):subs(S,%):subs(S,%):subs(S,%):subs(S,%); # all brackets have to be removed. - Emeric Deutsch, simplified by M. F. Hasler, Aug 06 2015 S:={1=(1,3),2=(1,3,2,2,3),3=(1,3,2,3)}: (curry(subs,S)@@6)([1]); # Robert Israel, Aug 06 2015
-
Mathematica
Nest[ Flatten[ # /. {1 -> {1, 3}, 2 -> {1, 3, 2, 2, 3}, 3 -> {1, 3, 2, 3}}] &, {1}, 5] (* Robert G. Wilson v, Jun 20 2005 *)
-
PARI
A106824(n,a=[1],S=[[1,3],[1,3,2,2,3],[1,3,2,3]])={while(#a
S[i],a)));a} \\ M. F. Hasler, Aug 06 2015
Extensions
More terms from Emeric Deutsch, May 30 2005
Comments