This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106834 #16 Feb 25 2015 05:29:08 %S A106834 1,1,2,3,6,3,16,30,18,4,125,220,135,40,5,1296,2160,1305,420,75,6, %T A106834 16807,26754,15750,5180,1050,126,7,262144,401408,229824,75460,16100, %U A106834 2268,196,8,4782969,7085880,3949722,1282176,278775,42336,4410,288,9 %N A106834 Triangle read by rows: T(n, m) = number of painted forests on labeled vertex set [n] with m trees. Also number of painted forests with exactly n - m edges. %C A106834 Row sums equal A101313 (Number of painted forests - exactly one of its trees is painted - on labeled vertex set [n].). %H A106834 Alois P. Heinz, <a href="/A106834/b106834.txt">Rows n = 1..141, flattened</a> %H A106834 Washington Bomfim, <a href="http://webonfim.vilabol.uol.com.br/A106241.html">Illustration Of This Sequence.</a> [Broken link?] %F A106834 T(n, m)= m * f(n, m), where f(n, m) = number of forests with n nodes and m labeled trees, A105599. %F A106834 E.g.f.: y*B(x)*exp(y*B(x)), where B(x) is e.g.f. for A000272. - _Vladeta Jovovic_, May 24 2005 %e A106834 T(4,3) = 18 because there are 18 such forests with 4 nodes and 3 trees. (See the illustration of this sequence). %e A106834 Triangle begins: %e A106834 1; %e A106834 1, 2; %e A106834 3, 6, 3; %e A106834 16, 30, 18, 4; %e A106834 125, 220, 135, 40, 5; %e A106834 1296, 2160, 1305, 420, 75, 6; %e A106834 16807, 26754, 15750, 5180, 1050, 126, 7; %p A106834 f:= proc(n,m) option remember; %p A106834 if n<0 then 0 %p A106834 elif n=m then 1 %p A106834 elif m<1 or m>n then 0 %p A106834 else add(binomial(n-1,j-1) *j^(j-2) *f(n-j,m-1), j=1..n-m+1) %p A106834 fi %p A106834 end: %p A106834 T:= (n,m)-> m*f(n,m): %p A106834 seq(seq(T(n, m), m=1..n), n=1..12); # _Alois P. Heinz_, Sep 10 2008 %t A106834 f[n_, m_] := f[n, m] = Which[n<0, 0, n == m, 1, m<1 || m>n, 0, True, Sum[ Binomial[n-1, j-1]*j^(j-2)*f[n-j, m-1], {j, 1, n-m+1}]]; T[n_, m_] := m*f[n, m]; Table[Table[T[n, m], {m, 1, n}], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Feb 25 2015, after _Alois P. Heinz_ *) %Y A106834 Cf. A101313, A105599, A106240. %K A106834 easy,nonn,tabl %O A106834 1,3 %A A106834 _Washington Bomfim_, May 19 2005