cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106846 a(n) = Sum_{k + l*m <= n} (k + l*m), with 0 <= k,l,m <= n.

Original entry on oeis.org

0, 4, 22, 64, 144, 269, 461, 720, 1072, 1522, 2092, 2774, 3626, 4614, 5776, 7126, 8694, 10445, 12461, 14684, 17204, 19997, 23077, 26412, 30156, 34206, 38600, 43352, 48532, 54042, 60072, 66458, 73338, 80664, 88450, 96710, 105638, 114999
Offset: 0

Views

Author

Ralf Stephan, May 06 2005

Keywords

Crossrefs

Programs

  • Maple
    A106846 := proc(n)
        local a,k,l,m ;
        a := 0 ;
        for k from 0 to n do
            for l from 0 to n do
                if l = 0 then
                    m := n ;
                else
                    m := floor((n-k)/l) ;
                end if;
                if m >=0 then
                    m := min(m,n) ;
                    a := a+(m+1)*k+l*m*(m+1)/2 ;
                end if;
            end do:
        end do:
        a ;
    end proc: # R. J. Mathar, Oct 17 2012
  • Mathematica
    A106846[n_] := Module[{a, k, l, m }, a = 0; For[k = 0, k <= n, k++, For[l = 0, l <= n, l++, If[l == 0, m = n, m = Floor[(n - k)/l]]; If[m >= 0, m = Min[m, n]; a = a + (m + 1)*k + l*m*(m + 1)/2 ]]]; a];
    Table[A106846[n], {n, 0, 40}] (* Jean-François Alcover, Apr 04 2024, after R. J. Mathar *)

Formula

From Ridouane Oudra, Jun 24 2024: (Start)
a(n) = (1/2) * (n*(n+1)*(2*n+1) + Sum_{k=1..n} (n^2 + n + k - k^2) * tau(k)).
a(n) = (1/2) * (A055112(n) + (n^2 + n) * A006218(n) + A143127(n) - A319085(n)).
a(n) = A059270(n) + A143127(n) + A106847(n). (End)