This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106863 #22 Dec 25 2017 20:11:13 %S A106863 5,7,11,17,19,23,43,47,61,73,83,101,131,137,139,149,157,163,191,197, %T A106863 199,229,233,239,251,263,271,277,283,311,313,347,349,353,359,367,389, %U A106863 397,419,443,457,461,463,467,479,491,499,503,541,557,571,577,587,593 %N A106863 Primes of the form x^2+xy+5y^2. %C A106863 Discriminant=-19. %C A106863 Also, primes of the form x^2-xy+5y^2 with x and y nonnegative. %C A106863 Also, primes which are a square (mod 19) (or, (mod 38) - cf. A191028). - _M. F. Hasler_, Jan 15 2016 %C A106863 Also, primes p such that Legendre(-2,p) = 0 or 1. - _N. J. A. Sloane_, Dec 25 2017 %H A106863 Vincenzo Librandi and Ray Chandler, <a href="/A106863/b106863.txt">Table of n, a(n) for n = 1..10000</a> [First 5000 terms from Vincenzo Librandi] %H A106863 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A106863 QuadPrimes2[1, -1, 5, 10000] (* see A106856 *) %o A106863 (PARI) select(p->issquare(Mod(p, 19))&&isprime(p), [1..1000]) \\ _M. F. Hasler_, Jan 15 2016 %Y A106863 Primes in A035243. %K A106863 nonn,easy %O A106863 1,1 %A A106863 _T. D. Noe_, May 09 2005