This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106891 #24 Dec 25 2017 20:17:53 %S A106891 11,13,17,23,31,41,43,47,53,59,67,79,83,97,101,103,107,109,127,139, %T A106891 167,173,181,193,197,229,239,251,269,271,281,283,293,307,311,317,337, %U A106891 353,359,367,379,397,401,431,439,443,461,479,487,509,541,547,557,563 %N A106891 Primes of the form x^2+xy+11y^2. %C A106891 Discriminant=-43. %C A106891 Also, primes of the form x^2-xy+11y^2 with x and y nonnegative. %C A106891 Also, primes which are a square (mod 43). - _M. F. Hasler_, Jan 15 2016 %C A106891 Also, primes p such that Legendre(-43,p) = 0 or 1. - _N. J. A. Sloane_, Dec 25 2017 %H A106891 Vincenzo Librandi and Ray Chandler, <a href="/A106891/b106891.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A106891 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A106891 QuadPrimes2[1, -1, 11, 10000] (* see A106856 *) %o A106891 (PARI) select(p->issquare(Mod(p,43))&&isprime(p),[1..1500]) \\ _M. F. Hasler_, Jan 15 2016 %Y A106891 Primes in A035233. Cf. A106890. %K A106891 nonn,easy %O A106891 1,1 %A A106891 _T. D. Noe_, May 09 2005 %E A106891 New definition from _N. J. A. Sloane_, Jun 08 2014