cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A106915 Primes of the form 3x^2 + 2xy + 5y^2, with x and y any integer.

This page as a plain text file.
%I A106915 #33 Sep 08 2022 08:45:18
%S A106915 3,5,13,19,59,61,83,101,131,139,157,173,181,227,229,251,269,283,293,
%T A106915 307,349,397,419,461,467,509,523,563,587,619,643,661,677,691,733,773,
%U A106915 787,797,811,829,853,859,941,971,997,1013,1021,1069,1091,1109,1123
%N A106915 Primes of the form 3x^2 + 2xy + 5y^2, with x and y any integer.
%C A106915 Discriminant = -56.
%C A106915 Also primes congruent to {3,5,13,19,27,45} mod 56. - _Vincenzo Librandi_, Jul 02 2016
%C A106915 The theta series for the quadratic form 3x^2 + 2xy + 5y^2 is the g.f. of A028928. - _Michael Somos_, Jul 02 2016
%C A106915 Legendre symbol (-14, a(n)) = Kronecker symbol (a(n), 14) = 1. Also, this sequence lists primes p such that Kronecker symbol (p, 2) = Legendre symbol (p, 7) = -1, i.e., primes p == 3, 5 (mod 8) and 3, 5, 6 (mod 7). - _Jianing Song_, Sep 04 2018
%H A106915 Vincenzo Librandi and Ray Chandler, <a href="/A106915/b106915.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A106915 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%e A106915 59 is in the sequence since it is prime, and 59 = 3x^2 + 2xy + 5y^2 with x = 3 and y = 2. - _Michael B. Porter_, Jul 02 2016
%t A106915 Union[QuadPrimes2[3, 2, 5, 10000], QuadPrimes2[3, -2, 5, 10000]] (* see A106856 *)
%t A106915 Select[Prime@Range[600], MemberQ[{3, 5, 13, 19, 27, 45}, Mod[#, 56]] &] (* _Vincenzo Librandi_, Jul 02 2016 *)
%o A106915 (Magma) [p: p in PrimesUpTo(3000) | p mod 56 in {3,5,13,19,27,45}]; // _Vincenzo Librandi_, Jul 02 2016
%Y A106915 Cf. A028928.
%K A106915 nonn,easy
%O A106915 1,1
%A A106915 _T. D. Noe_, May 09 2005