This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106949 #33 Jul 22 2024 00:50:30 %S A106949 2,11,17,41,59,83,89,107,113,131,137,179,227,233,251,257,281,347,353, %T A106949 401,419,443,449,467,491,521,563,569,587,593,617,641,659,683,761,809, %U A106949 827,857,881,929,947,953,971,977,1019,1049,1091,1097,1163,1187,1193 %N A106949 Primes of the form 2x^2 + 9y^2. %C A106949 Discriminant = -72. %H A106949 Vincenzo Librandi and Ray Chandler, <a href="/A106949/b106949.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A106949 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A106949 Primes congruent to 2,11,17 modulo 24. - _Michael Somos_, Aug 19 2006 %t A106949 QuadPrimes2[2, 0, 9, 10000] (* see A106856 *) %o A106949 (PARI) {a(n)= my(m, c); if(n<1, 0, c=0; m=0; while( c<n, m++; if( isprime(m)& m==2||m%24==11||m%24==17, c++)); m)} /* _Michael Somos_, Aug 19 2006 */ %o A106949 (PARI) list(lim)=my(v=List([2]),t); forprime(p=11,lim, t=p%24; if(t==11||t==17, listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 09 2017 %o A106949 (Magma) [ p: p in PrimesUpTo(2000) | p mod 24 in {2, 11, 17} ]; // _Vincenzo Librandi_, Jul 22 2012 %K A106949 nonn,easy %O A106949 1,1 %A A106949 _T. D. Noe_, May 09 2005