This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A106984 #24 Sep 08 2022 08:45:18 %S A106984 2,11,13,19,29,43,61,83,101,107,109,131,139,149,173,197,211,227,277, %T A106984 283,293,307,347,349,373,461,491,523,541,547,557,563,571,613,659,677, %U A106984 701,733,739,787,811,821,827,853,877,941,997,1019,1051,1069,1091,1117 %N A106984 Primes of the form 2x^2 + 11y^2. %C A106984 Discriminant = -88. %H A106984 Vincenzo Librandi and Ray Chandler, <a href="/A106984/b106984.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A106984 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A106984 The primes are congruent to {2, 11, 13, 19, 21, 29, 35, 43, 51, 61, 83, 85} (mod 88). - _T. D. Noe_, May 02 2008 %t A106984 QuadPrimes2[2, 0, 11, 10000] (* see A106856 *) %o A106984 (Magma) [ p: p in PrimesUpTo(2000) | p mod 88 in {2, 11, 13, 19, 21, 29, 35, 43, 51, 61, 83, 85} ]; // _Vincenzo Librandi_, Jul 23 2012 %o A106984 (PARI) list(lim)=my(v=List([2]),s=[11,13, 19, 21, 29, 35, 43, 51, 61, 83, 85]); forprime(p=11,lim, if(setsearch(s,p%88), listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 09 2017 %Y A106984 Cf. A139827. %K A106984 nonn,easy %O A106984 1,1 %A A106984 _T. D. Noe_, May 09 2005