This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107025 #15 Jun 22 2024 14:11:32 %S A107025 1,1,1,1,1,2,8,29,85,211,464,938,1808,3459,6826,14198,30960,69143, %T A107025 154433,340006,734561,1561313,3286129,6900097,14542101,30855957, %U A107025 65908862,141395972,303745077,651763377,1395140215,2978858672 %N A107025 Binomial transform of the expansion of 1/(1-x^5-x^6). %C A107025 In general, the binomial transform of 1/(1-x^r-x^(r+1)) is given by (1-x)^r/((1-x)^(r+1)-x^r), with a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k,(r+1)k) = Sum_{k=0..floor((r+1)n/r)} binomial(k,(r+1)n-r*k). %C A107025 Number of compositions of 6*n into parts 5 and 6. - _Seiichi Manyama_, Jun 22 2024 %H A107025 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,7,-1). %F A107025 G.f.: (1-x)^5/((1-x)^6-x^5). %F A107025 a(n) = 6a(n-1)-15a(n-2)+20a(n-3)-15a(n-4)+7a(n-5)-a(n-6). %F A107025 a(n) = Sum_{k=0..floor((n+1)/2)} binomial(n+k, 6k). %F A107025 a(n) = Sum_{k=0..floor(6n/5)} binomial(k, 6n-5k). %F A107025 a(n) = A017837(6*n). - _Seiichi Manyama_, Jun 22 2024 %Y A107025 Cf. A017837, A099099, A099131. %K A107025 easy,nonn %O A107025 0,6 %A A107025 _Paul Barry_, May 09 2005