A107070 Numbers m with the following property. Suppose m = d1 d2 ... dk in base 10. Construct the sequence with first term d1 and successive differences d1 d2 ... dk d1 d2 ... dk d1 d2 ...; then this sequence has as its initial k digits d1 d2 ... dk and also contains the number m.
1, 2, 3, 4, 5, 6, 7, 8, 9, 61, 71, 918, 3612, 5101, 8161, 12481, 51011, 248161, 361213, 5101111, 7141519, 8161723, 481617232, 2481617232, 4816172324, 5101111121, 24816172324, 51011111213, 71415192025, 612131516192, 816172324313, 3612131516192, 5101111121314, 6121315161920, 9181927283739
Offset: 1
Examples
The following example shows why 61 is a member: 6.12.13.19.20.26.27.33.34.40.41.47.48.54.55.61... (sequence) .6..1..6..1..6..1..6..1..6..1..6..1..6..1..6... (first differences)
Links
- E. Angelini, Belgian numbers.
- E. Angelini, Belgian Numbers [Cached copy with permission]
- J.-P. Davalan, Nombres belges [Includes applets to generate sequence]
Crossrefs
Programs
-
Mathematica
belgianDQ[n_] := Block[{id = IntegerDigits@ n, id1}, id1 = id[[1]]; MemberQ[ Accumulate@ Join[{0}, id], Mod[n - id1, Plus @@ id]] && id == Take[ Flatten[ IntegerDigits[ FoldList[#1 + #2 &, id1, id]]], Length@ id]] (* Robert G. Wilson v, May 06 2011 *)
Extensions
Minor edits by N. J. A. Sloane, May 06 2011
Comments