This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107066 #63 Jan 22 2025 09:25:46 %S A107066 1,2,4,8,16,31,60,116,224,432,833,1606,3096,5968,11504,22175,42744, %T A107066 82392,158816,306128,590081,1137418,2192444,4226072,8146016,15701951, %U A107066 30266484,58340524,112454976,216763936,417825921,805385358,1552430192,2992405408,5768046880 %N A107066 Expansion of 1/(1-2*x+x^5). %C A107066 Row sums of number triangle A107065. %C A107066 Same as A018922 plus first 3 additional terms. - _Vladimir Joseph Stephan Orlovsky_, Jul 08 2011 %C A107066 a(n) is the number of binary words of length n containing no subword 01011. - _Alois P. Heinz_, Mar 14 2012 %H A107066 Vincenzo Librandi, <a href="/A107066/b107066.txt">Table of n, a(n) for n = 0..1000</a> %H A107066 Otto Dunkel, <a href="http://www.jstor.org/stable/2298801">Solutions of a probability difference equation</a>, Amer. Math. Monthly, 32 (1925), 354-370; see p. 356. %H A107066 Jia Huang, <a href="https://arxiv.org/abs/2501.07463">A coin flip game and generalizations of Fibonacci numbers</a>, arXiv:2501.07463 [math.CO], 2025. See p. 7. %H A107066 Thomas Langley, Jeffrey Liese, and Jeffrey Remmel, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Langley/langley2.html">Generating Functions for Wilf Equivalence Under Generalized Factor Order</a>, J. Int. Seq. 14 (2011), Article #11.4.2. %H A107066 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (2,0,0,0,-1). %F A107066 a(n) = 2*a(n-1) - a(n-5). %F A107066 a(n) = Sum_{k=0..floor(n/5)} C(n-4*k, k) * 2^(n-2*k) *(-1)^k. %F A107066 a(n) = A018922(n-3) for n >= 3. - _R. J. Mathar_, Mar 09 2007 %F A107066 First difference of A119407. - _Michael Somos_, Dec 28 2012 %F A107066 From _Petros Hadjicostas_, Jun 12 2019: (Start) %F A107066 G.f.: 1/((1 - x)*(1 - x - x^2 - x^3 - x^4)). %F A107066 Setting k = 1 in the double recurrence for array A140996, we get that a(n+5) = 1 + a(n+1) + a(n+2) + a(n+3) + a(n+4) for n >= 0, which of course we can prove using other methods as well. See also Dunkel (1925). %F A107066 (End) %F A107066 a(n) = Sum_{k=0..n+3} A000078(k). - _Greg Dresden_, Jan 01 2021 %e A107066 G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 16*x^4 + 31*x^5 + 60*x^6 + 116*x^7 + 224*x^8 + ... %t A107066 CoefficientList[Series[1/(1 - 2*z + z^5), {z, 0, 40}], z] (* _Vladimir Joseph Stephan Orlovsky_, Jul 08 2011 *) %t A107066 LinearRecurrence[{2,0,0,0,-1}, {1,2,4,8,16}, 40] (* _G. C. Greubel_, Jun 12 2019 *) %o A107066 (PARI) {a(n) = if( n<0, n = -n; polcoeff( -x^5 / (1 - 2*x^4 + x^5) + x * O(x^n), n), polcoeff( 1 / (1 - 2*x + x^5) + x * O(x^n), n))} /* _Michael Somos_, Dec 28 2012 */ %o A107066 (Magma) I:=[1,2,4,8,16]; [n le 5 select I[n] else 2*Self(n-1) - Self(n-5): n in [1..40]]; // _G. C. Greubel_, Jun 12 2019 %o A107066 (Sage) (1/(1-2*x+x^5)).series(x, 40).coefficients(x, sparse=False) # _G. C. Greubel_, Jun 12 2019 %o A107066 (GAP) a:=[1,2,4,8,16];; for n in [6..40] do a[n]:=2*a[n-1]-a[n-5]; od; a; # _G. C. Greubel_, Jun 12 2019 %Y A107066 Cf. A018922, A119407 (partial sums), A000078 (first differences). %Y A107066 Cf. A209888. - _Alois P. Heinz_, Mar 14 2012 %Y A107066 Column k = 1 of array A140996 (with a different offset) and second main diagonal of A140995. %Y A107066 Column k = 4 of A172119 (with a different offset). %K A107066 easy,nonn %O A107066 0,2 %A A107066 _Paul Barry_, May 10 2005