This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107092 #19 May 13 2024 13:57:34 %S A107092 1,1,-1,2,-4,9,-22,55,-142,376,-1011,2758,-7614,21220,-59630,168759, %T A107092 -480533,1375676,-3957075,11430582,-33144264,96434321,-281447954, %U A107092 823734157,-2417092933,7109265120,-20955593252,61893804180,-183148075432,542885589115,-1611809502764,4792612539375 %N A107092 G.f. A(x) satisfies A(x)^3 = A(x^3) + 3*x. %C A107092 Self-convolution cube is A107093. %H A107092 Seiichi Manyama, <a href="/A107092/b107092.txt">Table of n, a(n) for n = 0..1000</a> %H A107092 Ira M. Gessel, <a href="https://www.emis.de/journals/SLC/wpapers/s91vortrag/gessel3.pdf">The Amdeberhan-Konvalinka Conjecture and Symmetric Functions</a>, Séminaire Lotharingien Comb. (2024). See p. 83 of 109. %e A107092 A(x)^3 = 1 + 3*x + x^3 - x^6 + 2*x^9 - 4*x^12 + 9*x^15 - 22*x^18 +... %e A107092 A(x^3) = 1 + x^3 - x^6 + 2*x^9 - 4*x^12 + 9*x^15 - 22*x^18+... %o A107092 (PARI) {a(n)=local(A=1+x);for(i=1,n,A=(subst(A,x,x^3)+3*x+x*O(x^n))^(1/3)); polcoeff(A,n,x)} %Y A107092 Cf. A107093, A008544, A352703, A352705, A361763. %K A107092 sign %O A107092 0,4 %A A107092 _Paul D. Hanna_, May 11 2005