cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107096 G.f. A(x) satisfies: A(x)^2 = x*G(x) where G(G(x)) = (1+x)^2*G(x) and G(x) is the g.f. of A107095.

This page as a plain text file.
%I A107096 #9 Mar 04 2018 03:06:20
%S A107096 0,1,1,-2,11,-88,869,-9876,124473,-1701630,24870695,-384795184,
%T A107096 6257294780,-106377162620,1882982975521,-34593496243070,
%U A107096 657935674477431,-12927331575084846,261951066040220637,-5466177185459699916,117315664923801661485,-2586804284853871362408
%N A107096 G.f. A(x) satisfies: A(x)^2 = x*G(x) where G(G(x)) = (1+x)^2*G(x) and G(x) is the g.f. of A107095.
%F A107096 G.f. satisfies: A(x)^2 = x*A( A(x)^2/x )/(1+x).
%F A107096 G.f. satisfies: A(x) = x + x*Series_Reversion( A(x)^2/x ). - _Paul D. Hanna_, Mar 15 2010
%o A107096 (PARI) {a(n)=local(A,B,F);if(n<1,0,F=x+2*x^2+x*O(x^n);A=F; for(j=0,n, for(i=0,j,B=serreverse(A);A=(A+subst(B,x,A*(1+x)^2))/2); A=round(A));polcoeff(sqrt(x*A),n,x))}
%o A107096 (PARI) {a(n)=local(A=1+x+x*O(x^n));for(i=1,n,A=1+serreverse(x*subst(A^2,x,x+x*O(x^n))));polcoeff(x*A,n)} \\ _Paul D. Hanna_, Mar 15 2010
%Y A107096 Cf. A107095.
%K A107096 sign
%O A107096 0,4
%A A107096 _Paul D. Hanna_, May 12 2005