cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107108 Shorthand of n-th smallest n-digit prime, see comments.

This page as a plain text file.
%I A107108 #24 Jun 17 2021 09:15:49
%S A107108 2,3,7,21,61,69,117,189,193,181,259,193,303,411,487,513,931,591,861,
%T A107108 667,801,1081,711,1027,1321,1753,1581,2109,1527,1951,2613,2053,2533,
%U A107108 3171,2653,3073,2769,2899,3201,3133,4089,2859,4447,5367,3819,4923,5251,5109,5127,6721
%N A107108 Shorthand of n-th smallest n-digit prime, see comments.
%C A107108 To shorthand the n-th - smallest n-digit prime it is convenient to subtract 10^(n-1) (n>1). Compare a(n) with A069100(n).
%H A107108 David A. Corneth, <a href="/A107108/b107108.txt">Table of n, a(n) for n = 1..1000</a> (using b-file from A069100)
%F A107108 a(1)=2; at n>1 a(n)=prime(pi[10^(n-1)]+n)-10^(n-1)=A069100(n)-10^(n-1).
%o A107108 (PARI) a(n)=prime(primepi(10^(n-1))+n)-if(n==1,0,10^(n-1)) \\ _Franklin T. Adams-Watters_, Mar 07 2014
%o A107108 (PARI) a(n) = {if(n == 1, return(2)); my(t = 0); forprime(p = 10^(n-1), 10^n, t++; if(t==n, return(p - 10^(n-1))))} \\ _David A. Corneth_, Jun 16 2021
%o A107108 (Python)
%o A107108 from sympy import nextprime
%o A107108 def a(n):  return nextprime(10**(n-1), ith=n) - 10**(n-1) * (n > 1)
%o A107108 print([a(n) for n in range(1, 51)]) # _Michael S. Branicky_, Jun 16 2021
%Y A107108 Cf. A069100.
%K A107108 nonn,base
%O A107108 1,1
%A A107108 _Zak Seidov_, May 12 2005
%E A107108 a(3) corrected by _Franklin T. Adams-Watters_, Mar 07 2014
%E A107108 More terms from _David A. Corneth_, Jun 16 2021