cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107118 Numbers that are both centered triangular numbers (A005448) and centered hexagonal numbers (A003215).

This page as a plain text file.
%I A107118 #28 Mar 02 2016 14:54:11
%S A107118 1,19,631,21421,727669,24719311,839728891,28526062969,969046412041,
%T A107118 32919051946411,1118278719765919,37988557420094821,
%U A107118 1290492673563457981,43838762343737476519,1489227427013510743651,50589893756115627807601,1718567160280917834714769
%N A107118 Numbers that are both centered triangular numbers (A005448) and centered hexagonal numbers (A003215).
%C A107118 The centered hexagonal numbers are given by 3*p^2 - 3*p + 1 while the centered triangular numbers are given by (3*r^2 + 3*r + 2)/2. A natural number is both of the above numbers if and only if there exist numbers p and r such that 2*(2p-1)^2 = (2*r+1)^2+1. The Diophantine equation X^2 = 2*Y^2 - 1 has the following solutions: X is given by 1, 7, 41, 239, ..., i.e., A002315, and Y is given by A001653. The first equation gives r with 0, 3, 20, 119, 6906, i.e., A001652, and p with 1, 3, 15, 85, 493, ..., i.e., A011900.
%H A107118 Colin Barker, <a href="/A107118/b107118.txt">Table of n, a(n) for n = 1..654</a>
%H A107118 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1).
%F A107118 a(n+2) = 34*a(n+1) - a(n) - 14.
%F A107118 a(n+1) = 17*a(n) - 7 + sqrt(288*a(n)^2 - 252*a(n) + 45).
%F A107118 G.f.: h(z)=(z*(1-16*z+z^2))/((1-z)*(1-34*z+z^2)).
%F A107118 a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3). - _Colin Barker_, Jan 02 2015
%F A107118 a(n) = (14+(9+6*sqrt(2))*(17+12*sqrt(2))^(-n)+(9-6*sqrt(2))*(17+12*sqrt(2))^n)/32. - _Colin Barker_, Mar 02 2016
%t A107118 a[n_] := 17*n - 7 + Sqrt[288*n^2 - 252*n + 45]; NestList[a, 1, 20] (* _Stefan Steinerberger_, Sep 18 2007 *)
%t A107118 LinearRecurrence[{35,-35,1},{1,19,631},30] (* _Harvey P. Dale_, Jan 16 2016 *)
%o A107118 (PARI) Vec(-x*(x^2-16*x+1)/((x-1)*(x^2-34*x+1)) + O(x^100)) \\ _Colin Barker_, Jan 02 2015
%Y A107118 Cf. A003215 (Centered hexagonal numbers), A005448 (Centered triangular numbers).
%Y A107118 Cf. A001652, A001653, A002315, A011900.
%K A107118 nonn,easy
%O A107118 1,2
%A A107118 _Richard Choulet_, Sep 18 2007
%E A107118 More terms from _Stefan Steinerberger_, Sep 18 2007