cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107129 Numbers n which are palindromic in more bases b, 1

Original entry on oeis.org

1, 3, 5, 10, 21, 36, 60, 80, 120, 180, 252, 300, 720, 1080, 1440, 1680, 2160, 2520, 3600, 5040, 7560, 9240, 10080, 12600, 15120, 18480, 25200, 27720, 36960, 41580, 45360, 50400, 55440, 83160, 110880, 131040, 166320, 221760, 277200, 332640, 360360
Offset: 0

Views

Author

Michael Trott (mtrott(AT)wolfram.com) and Robert G. Wilson v, May 12 2005

Keywords

Comments

Records by number in A037183, by indices in A065531.
Except for 3, 5 and 21 they are all even and except for the first seven, they are all multiples of twelve.

Examples

			1 has no palindromic representation in bases 2 to n.
3 = 11_2.
5 = 101_2, 11_4.
10 = 101_3, 22_4, 11_9.
21 = 10101_2, 111_4, 33_6, 11_20.
36960 = 5775_19, 3(90)3_97, (176)(176)_209, (168)(168)_219,
(165)(165)_223, (160)(160)_230, (154)(154)_239, (140)(140)_263, (132)(132)_279,
(120)(120)_307, (112)(112)_329, (110)(110)_335, (105)(105)_351, (96)(96)_384,
(88)(88)_419, (84)(84)_439, (80)(80)_461, (77)(77)_479, (70)(70)_527,
(66)(66)_559, (60)(60)_615, (56)(56)_659, (55)(55)_671, (48)(48)_769,
(44)(44)_839, (42)(42)_879, (40)(40)_923, (35)(35)_1055, (33)(33)_1119,
(32)(32)_1154, (30)(30)_1231, (28)(28)_1319, (24)(24)_1539, (22)(22)_1679,
(21)(21)_1759, (20)(20)_1847, (16)(16)_2309, (15)(15)_2463, (14)(14)_2639,
(12)(12)_3079, (11)(11)_3359, (10)(10)_3695, 88_4619, 77_5279, 66_6159, 55_7391,
44_9239, 33_12319, 22_18479, 11_36959.
		

References

  • Michael Trott, The Mathematica GuideBook for Programming, Springer, 2004, page 218.

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{s = Floor@ Sqrt[n + 1] - 1, b = 2, c = If[IntegerQ@ Sqrt[n + 1], -2, -1]}, While[b < s + 2, idn = IntegerDigits[n, b]; If[ idn == Reverse@ idn, c++]; b++]; c + Count[ Mod[n, Range@ s], 0]]; f[n_] := 0 /; n < 3;
    k = 0; mx = -1; lst = {}; While[ k < 360000001, c = f@ k; If[ c > mx, AppendTo[lst, k]; mx = c]; k++]; lst