This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107133 #22 Feb 09 2017 13:20:05 %S A107133 7,11,23,43,67,71,79,107,127,151,163,179,191,211,239,263,331,347,359, %T A107133 379,431,443,463,487,491,499,547,571,599,631,659,683,739,743,751,823, %U A107133 827,863,883,907,911,919,947,967,991,1019,1031,1051,1087,1103,1163 %N A107133 Primes of the form 4x^2 + 7y^2. %C A107133 Discriminant = -112. See A107132 for more information. %H A107133 Vincenzo Librandi and Ray Chandler, <a href="/A107133/b107133.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A107133 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A107133 Except for 7, the primes are congruent to {11, 15, 23} (mod 28). - _T. D. Noe_, May 02 2008 %t A107133 QuadPrimes2[4, 0, 7, 10000] (* see A106856 *) %o A107133 (PARI) list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\4), w=4*x^2; for(y=1, sqrtint((lim-w)\7), if(isprime(t=w+7*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 09 2017 %Y A107133 Cf. A139827. %K A107133 nonn,easy %O A107133 1,1 %A A107133 _T. D. Noe_, May 13 2005