This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107138 #23 Sep 08 2022 08:45:18 %S A107138 3,11,23,47,59,71,179,191,251,311,383,419,443,467,587,599,647,683,719, %T A107138 839,863,911,947,971,983,1103,1259,1307,1367,1439,1499,1511,1523,1571, %U A107138 1607,1787,1871,1907,2003,2027,2039,2099,2267,2399,2423,2447,2531 %N A107138 Primes of the form 3x^2 + 11y^2. %C A107138 Discriminant = -132. See A107132 for more information. %H A107138 Vincenzo Librandi and Ray Chandler, <a href="/A107138/b107138.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A107138 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A107138 The primes are congruent to {3, 11, 23, 47, 59, 71, 119} (mod 132). - _T. D. Noe_, May 02 2008 %t A107138 QuadPrimes2[3, 0, 11, 10000] (* see A106856 *) %o A107138 (Magma) [ p: p in PrimesUpTo(3000) | p mod 132 in {3, 11, 23, 47, 59, 71, 119} ]; // _Vincenzo Librandi_, Jul 24 2012 %o A107138 (PARI) list(lim)=my(v=List([3]), s=[11, 23, 47, 59, 71, 119]); forprime(p=11, lim, if(setsearch(s, p%132), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 09 2017 %Y A107138 Cf. A139827. %K A107138 nonn,easy %O A107138 1,1 %A A107138 _T. D. Noe_, May 13 2005