This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107141 #25 Feb 09 2017 14:34:47 %S A107141 13,73,97,109,181,229,241,277,337,409,421,457,541,709,733,757,829, %T A107141 1009,1033,1093,1117,1129,1153,1213,1237,1249,1381,1453,1489,1597, %U A107141 1609,1621,1669,1753,1777,1873,2017,2029,2089,2113,2161,2221,2281 %N A107141 Primes of the form 4x^2 + 9y^2. %C A107141 Discriminant = -144. See A107132 for more information. %C A107141 These appear to be the same as Glaisher's 1889 list of primes == 1 mod 12 that have "negative character". - _N. J. A. Sloane_, Jul 30 2015 %D A107141 J. W. L. Glaisher, On the square of Euler's series, Proc. London Math. Soc., 21 (1889), 182-194. %H A107141 Vincenzo Librandi and Ray Chandler, <a href="/A107141/b107141.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A107141 S. R. Finch, <a href="http://arXiv.org/abs/math.NT/0701251">Powers of Euler's q-Series</a>, (arXiv:math.NT/0701251). %H A107141 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A107141 QuadPrimes2[4, 0, 9, 10000] (* see A106856 *) %o A107141 (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\4), w=4*x^2; for(y=1, sqrtint((lim-w)\9), if(isprime(t=w+9*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 09 2017 %K A107141 nonn,easy %O A107141 1,1 %A A107141 _T. D. Noe_, May 13 2005