This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107146 #20 Sep 08 2022 08:45:18 %S A107146 7,13,31,61,103,157,181,199,223,229,271,349,367,397,439,607,661,727, %T A107146 733,829,853,997,1021,1039,1063,1069,1231,1237,1279,1399,1447,1543, %U A107146 1567,1669,1693,1741,1783,1861,1879,1951,2029,2239,2287,2341,2383 %N A107146 Primes of the form 6x^2 + 7y^2. %C A107146 Discriminant = -168. See A107132 for more information. %H A107146 Vincenzo Librandi and Ray Chandler, <a href="/A107146/b107146.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A107146 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A107146 The primes are congruent to {7, 13, 31, 55, 61, 103, 157} (mod 168). - _T. D. Noe_, May 02 2008 %t A107146 QuadPrimes2[6, 0, 7, 10000] (* see A106856 *) %o A107146 (Magma) [ p: p in PrimesUpTo(3000) | p mod 168 in {7, 13, 31, 55, 61, 103, 157} ]; // _Vincenzo Librandi_, Jul 24 2012 %o A107146 (PARI) list(lim)=my(v=List([7]), s=[13, 31, 55, 61, 103, 157]); forprime(p=13, lim, if(setsearch(s, p%168), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 09 2017 %Y A107146 Cf. A139827. %K A107146 nonn,easy %O A107146 1,1 %A A107146 _T. D. Noe_, May 13 2005