This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107151 #20 Sep 08 2022 08:45:18 %S A107151 5,29,41,89,101,149,269,281,389,401,449,461,509,521,569,641,701,761, %T A107151 809,821,881,929,941,1049,1061,1109,1181,1229,1289,1301,1361,1409, %U A107151 1481,1601,1709,1721,1889,1901,1949,2069,2081,2129,2141,2309,2381 %N A107151 Primes of the form 5x^2 + 9y^2. %C A107151 Discriminant = -180. See A107132 for more information. %C A107151 Except for 5, also primes of the form 9x^2 + 6xy + 26y^2. See A140633. - _T. D. Noe_, May 19 2008 %H A107151 Vincenzo Librandi and Ray Chandler, <a href="/A107151/b107151.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A107151 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A107151 Except for 5, the primes are congruent to {29, 41} (mod 60). - _T. D. Noe_, May 02 2008 %t A107151 QuadPrimes2[5, 0, 9, 10000] (* see A106856 *) %o A107151 (Magma) [5] cat [ p: p in PrimesUpTo(3000) | p mod 60 in {29, 41 } ]; // _Vincenzo Librandi_, Jul 24 2012 %o A107151 (PARI) list(lim)=my(v=List([5]),t); forprime(p=29,lim, t=p%60; if(t==29||t==41, listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 09 2017 %Y A107151 Cf. A139827. %K A107151 nonn,easy %O A107151 1,1 %A A107151 _T. D. Noe_, May 13 2005