cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107155 Primes of the form x^2 + 49y^2.

This page as a plain text file.
%I A107155 #19 Feb 09 2017 15:04:07
%S A107155 53,113,149,193,197,277,317,373,421,449,457,541,557,809,821,953,1009,
%T A107155 1117,1229,1289,1409,1481,1493,1549,1597,1709,1789,1801,1873,1877,
%U A107155 1901,1933,2053,2153,2221,2293,2377,2381,2389,2417,2437,2521,2549
%N A107155 Primes of the form x^2 + 49y^2.
%C A107155 Discriminant = -196. See A107132 for more information.
%H A107155 Vincenzo Librandi and Ray Chandler, <a href="/A107155/b107155.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A107155 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t A107155 QuadPrimes2[1, 0, 49, 10000] (* see A106856 *)
%o A107155 (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\1), w=x^2; for(y=1, sqrtint((lim-w)\49), if(isprime(t=w+49*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 09 2017
%K A107155 nonn,easy
%O A107155 1,1
%A A107155 _T. D. Noe_, May 13 2005