cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107159 Primes of the form 4x^2 + 13y^2.

This page as a plain text file.
%I A107159 #18 Feb 09 2017 17:09:19
%S A107159 13,17,29,113,157,181,269,313,337,373,389,521,601,641,653,673,701,797,
%T A107159 809,1069,1109,1117,1153,1213,1249,1453,1481,1609,1613,1621,1637,1777,
%U A107159 1933,1949,1973,2053,2081,2089,2129,2213,2237,2297,2341,2357,2393
%N A107159 Primes of the form 4x^2 + 13y^2.
%C A107159 Discriminant = -208. See A107132 for more information.
%H A107159 Vincenzo Librandi and Ray Chandler, <a href="/A107159/b107159.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A107159 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t A107159 QuadPrimes2[4, 0, 13, 10000] (* see A106856 *)
%o A107159 (PARI) list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\4), w=4*x^2; for(y=1, sqrtint((lim-w)\13), if(isprime(t=w+13*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 09 2017
%K A107159 nonn,easy
%O A107159 1,1
%A A107159 _T. D. Noe_, May 13 2005