This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107161 #19 Feb 09 2017 17:20:49 %S A107161 2,29,59,227,251,269,293,419,443,677,683,773,821,827,1013,1187,1277, %T A107161 1301,1373,1451,1493,1523,1709,1733,1811,1901,1949,2027,2237,2243, %U A107161 2339,2357,2381,2477,2579,2693,2699,2909,3299,3371,3389,3413,3467 %N A107161 Primes of the form 2x^2 + 27y^2. %C A107161 Discriminant = -216. See A107132 for more information. %H A107161 Vincenzo Librandi and Ray Chandler, <a href="/A107161/b107161.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A107161 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %t A107161 QuadPrimes2[2, 0, 27, 10000] (* see A106856 *) %t A107161 With[{nn=50},Take[Union[Select[2#[[1]]+27#[[2]]&/@(Tuples[Range[ 0,nn],2]^2),PrimeQ]],nn]] (* _Harvey P. Dale_, Jun 15 2014 *) %o A107161 (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\27), if(isprime(t=w+27*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 09 2017 %K A107161 nonn,easy %O A107161 1,1 %A A107161 _T. D. Noe_, May 13 2005 %E A107161 Terms, including b-file, checked by _Harvey P. Dale_, Jun 16 2014