cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107165 Primes of the form 3x^2 + 19y^2.

This page as a plain text file.
%I A107165 #23 Sep 08 2022 08:45:18
%S A107165 3,19,31,67,79,103,127,151,211,223,307,331,379,439,487,523,547,607,
%T A107165 751,787,811,907,991,1039,1063,1123,1171,1231,1291,1399,1447,1459,
%U A107165 1471,1579,1627,1663,1699,1723,1747,1951,2083,2131,2143,2179,2203
%N A107165 Primes of the form 3x^2 + 19y^2.
%C A107165 Discriminant = -228. See A107132 for more information.
%H A107165 Vincenzo Librandi and Ray Chandler, <a href="/A107165/b107165.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A107165 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%F A107165 The primes are congruent to {3, 19, 31, 67, 79, 91, 103, 127, 151, 211, 223} (mod 228). - _T. D. Noe_, May 02 2008
%t A107165 QuadPrimes2[3, 0, 19, 10000] (* see A106856 *)
%o A107165 (Magma) [p: p in PrimesUpTo(3000) | p mod 228 in [3, 19, 31, 67, 79, 91, 103, 127, 151, 211, 223]]; // _Vincenzo Librandi_, Jul 25 2012
%o A107165 (PARI) list(lim)=my(v=List([3]), s=[19, 31, 67, 79, 91, 103, 127, 151, 211, 223]); forprime(p=19, lim, if(setsearch(s, p%228), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017
%Y A107165 Cf. A139827.
%K A107165 nonn,easy
%O A107165 1,1
%A A107165 _T. D. Noe_, May 13 2005