This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107166 #20 Sep 08 2022 08:45:18 %S A107166 2,29,31,37,47,61,79,101,127,157,191,229,263,269,271,293,311,317,359, %T A107166 367,389,421,461,479,503,541,599,607,653,677,727,733,743,751,757,773, %U A107166 797,823,829,839,853,887,911,967,983,997,1013,1061,1063,1087,1117 %N A107166 Primes of the form 2x^2 + 29y^2. %C A107166 Discriminant = -232. See A107132 for more information. %H A107166 Vincenzo Librandi and Ray Chandler, <a href="/A107166/b107166.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A107166 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A107166 The primes are congruent to {2, 15, 21, 29, 31, 37, 39, 47, 55, 61, 69, 77, 79, 85, 95, 101, 119, 127, 133, 135, 143, 157, 159, 189, 191, 205, 213, 215, 221, 229} (mod 232). - _T. D. Noe_, May 02 2008 %t A107166 QuadPrimes2[2, 0, 29, 10000] (* see A106856 *) %o A107166 (Magma) [ p: p in PrimesUpTo(2000) | p mod 232 in {2, 15, 21, 29, 31, 37, 39, 47, 55, 61, 69, 77, 79, 85, 95, 101, 119, 127, 133, 135, 143, 157, 159, 189, 191, 205, 213, 215, 221, 229} ]; // _Vincenzo Librandi_, Jul 25 2012 %o A107166 (PARI) list(lim)=my(v=List([2]), s=[15, 21, 29, 31, 37, 39, 47, 55, 61, 69, 77, 79, 85, 95, 101, 119, 127, 133, 135, 143, 157, 159, 189, 191, 205, 213, 215, 221, 229]); forprime(p=29, lim, if(setsearch(s, p%232), listput(v, p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017 %Y A107166 Cf. A139827. %K A107166 nonn,easy %O A107166 1,1 %A A107166 _T. D. Noe_, May 13 2005