This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107169 #21 Sep 08 2022 08:45:18 %S A107169 3,23,47,83,107,167,227,263,347,383,443,467,503,563,587,647,683,743, %T A107169 827,863,887,947,983,1103,1163,1187,1223,1283,1307,1367,1427,1487, %U A107169 1523,1583,1607,1667,1787,1823,1847,1907,2003,2027,2063,2087,2207 %N A107169 Primes of the form 3x^2 + 20y^2. %C A107169 Discriminant = -240. See A107132 for more information. %C A107169 Except for 3, also primes of the forms 2x^2 + 2xy + 23y^2 (A139831) and 8x^2 + 4xy + 23y^2. See A140633. - _T. D. Noe_, May 19 2008 %H A107169 Vincenzo Librandi and Ray Chandler, <a href="/A107169/b107169.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A107169 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A107169 Except for 3, the primes are congruent to {23, 47} (mod 60). - _T. D. Noe_, May 02 2008 %t A107169 QuadPrimes2[3, 0, 20, 10000] (* see A106856 *) %o A107169 (Magma) [3] cat [p: p in PrimesUpTo(3000) | p mod 60 in [23, 47]]; // _Vincenzo Librandi_, Jul 25 2012 %o A107169 (PARI) list(lim)=my(v=List([3]),t); forprime(p=23,lim, t=p%60; if(t==23||t==47, listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017 %Y A107169 Cf. A139827. %K A107169 nonn,easy %O A107169 1,1 %A A107169 _T. D. Noe_, May 13 2005