cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A107177 Primes of the form 3x^2+23y^2.

This page as a plain text file.
%I A107177 #18 Feb 10 2017 12:18:20
%S A107177 3,23,71,131,167,239,443,587,599,683,1163,1223,1319,1427,1451,1499,
%T A107177 1559,1619,1979,2027,2099,2243,2339,2447,2543,2579,2663,2927,3083,
%U A107177 3167,3251,3347,3359,3371,3491,3623,3659,3767,3911,4079,4463,4583
%N A107177 Primes of the form 3x^2+23y^2.
%C A107177 Discriminant=-276. See A107132 for more information.
%H A107177 Vincenzo Librandi and Ray Chandler, <a href="/A107177/b107177.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi]
%H A107177 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)
%t A107177 QuadPrimes2[3, 0, 23, 10000] (* see A106856 *)
%o A107177 (PARI) list(lim)=my(v=List(),w,t); for(x=0, sqrtint(lim\3), w=3*x^2; for(y=0, sqrtint((lim-w)\23), if(isprime(t=w+23*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 10 2017
%K A107177 nonn,easy
%O A107177 1,1
%A A107177 _T. D. Noe_, May 13 2005