This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107180 #20 Sep 08 2022 08:45:18 %S A107180 2,37,43,53,67,107,163,197,277,317,347,373,443,547,557,613,653,683, %T A107180 757,827,877,883,907,947,1093,1117,1163,1187,1213,1283,1373,1453,1493, %U A107180 1523,1597,1667,1723,1733,1747,1787,1877,1933,1997,2003,2027,2053 %N A107180 Primes of the form 2x^2 + 35y^2. %C A107180 Discriminant = -280. See A107132 for more information. %H A107180 Vincenzo Librandi and Ray Chandler, <a href="/A107180/b107180.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A107180 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A107180 The primes are congruent to {2, 37, 43, 53, 67, 93, 107, 123, 163, 197, 253, 267, 277} (mod 280). - _T. D. Noe_, May 02 2008 %t A107180 QuadPrimes2[2, 0, 35, 10000] (* see A106856 *) %o A107180 (Magma) [ p: p in PrimesUpTo(3000) | p mod 280 in {2, 37, 43, 53, 67, 93, 107, 123, 163, 197, 253, 267, 277} ]; // _Vincenzo Librandi_, Jul 26 2012 %o A107180 (PARI) list(lim)=my(v=List(),w,t); for(x=1, sqrtint(lim\2), w=2*x^2; for(y=0, sqrtint((lim-w)\35), if(isprime(t=w+35*y^2), listput(v,t)))); Set(v) \\ _Charles R Greathouse IV_, Feb 10 2017 %Y A107180 Cf. A139827. %K A107180 nonn,easy %O A107180 1,1 %A A107180 _T. D. Noe_, May 13 2005