This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A107181 #31 Sep 08 2022 08:45:18 %S A107181 17,41,89,113,137,233,257,281,353,401,449,521,569,593,617,641,761,809, %T A107181 857,881,929,953,977,1049,1097,1193,1217,1289,1361,1409,1433,1481, %U A107181 1553,1601,1697,1721,1889,1913,2081,2129,2153,2273,2297,2393,2417 %N A107181 Primes of the form 8x^2 + 9y^2. %C A107181 Discriminant = -288. See A107132 for more information. %C A107181 Also primes of the form 9x^2 + 6xy + 17y^2. See A140633. - _T. D. Noe_, May 19 2008 %C A107181 All terms are of the form x^2 + y^2, see A002144. - _Zak Seidov_, Jan 26 2014 %H A107181 Vincenzo Librandi and Ray Chandler, <a href="/A107181/b107181.txt">Table of n, a(n) for n = 1..10000</a> [First 1000 terms from Vincenzo Librandi] %H A107181 N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references) %F A107181 The primes are congruent to 17 (mod 24). - _T. D. Noe_, May 02 2008 %t A107181 QuadPrimes2[8, 0, 9, 10000] (* see A106856 *) %o A107181 (Magma) [ p: p in PrimesUpTo(5000) | p mod 24 eq 17 ]; // _Vincenzo Librandi_, Apr 19 2011 %o A107181 (PARI) list(lim)=my(v=List()); forprime(p=17,lim, if(p%24==17, listput(v,p))); Vec(v) \\ _Charles R Greathouse IV_, Feb 10 2017 %Y A107181 Subsequence of A002144 (Pythagorean primes). %Y A107181 Cf. A139827. %K A107181 nonn,easy %O A107181 1,1 %A A107181 _T. D. Noe_, May 13 2005